
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

TOWARDS AN IMPLEMENTATION
OF POLYMORPHIC C

by

Peter Bryant Bonem

September 1995

Thesis Advisor: Dennis Volpano

Approved for public release; distribution is unlimited.

19960311 179
DUD QUALITY INSPECTED §

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE
September 1995

13. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE
TOWARDS AN IMPLEMENTATION OF POLYMORPHIC C

6. AUTHOR(S)

Bonem, Peter B

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position
of the Department of Defense or the United States Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Functional programming languages incorporate a number of powerful feaures, including advanced
polymorphic type systems and first-class, higher-order functions. However, these important features have
had little effect on popular imperative languages such as C. As part of the Advanced Type Systems Project
at NPS, a dialect of C called Polymorphic C has been designed which integrates an advanced polymorphic
type system into C.

In order to implement full parametric polymorphism while retaining the run time efficiency of C, it is
necessary to allow mixed data representations. We recommend adopting a variant of the program
translation methods first proposed by Leroy to implement mixed data representations in ML for use in
Polymorphic C.

14. SUBJECT TERMS
Polymorphism, Polymorphic Type Systems, Functional Programing
Languages

15. NUMBER OF PAGES
104

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

IX

Approved for public release; distribution is unlimited

TOWARDS AN IMPLEMENTATION OF POLYMORPHIC C

Peter B. Bonem
Lieutenant Commander, United States Navy

B.S., Purdue University, 1979

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1995

Author:

Approved by:

ijg JVU^vn
Peter B. Bon

Dennis Volpano, Thesis Advisor

Ted Lewis, Chairman
Department of Computer Science

in

IV

ABSTRACT

Functional programming languages incorporate a number of powerful features,

including advanced polymorphic type systems and first-class, higher-order functions.

However, these important features have had little impact on popular imperative languages

such as C. As part of the Advanced Type Systems Project at NPS, a dialect of C called

Polymorphic C has been designed that integrates an advanced polymorphic type system

into C.

In order to implement full parametric polymorphism while retaining the run time

efficiency of C, it is necessary to allow mixed data representations. We recommend

adopting a variant of the program translation methods first proposed by Leroy to

implement mixed data representations in ML for use in Polymorphic C.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. FUNCTIONAL PROGRAMMING LANGUAGES 1

B. CONCEPTS AND DEFINITIONS 2

C. THE ROLE OF POLYMORPHISM IN SOFTWARE
ENGINEERING 10

D. C/C++ 11

E. INTRODUCTION TO POLYMORPHIC C 18

II. IMPLEMENTING POLYMORPHISM 21

A. TEXTUAL POLYMORPHISM 22

B. UNIFORM POLYMORPHISM 27

C. TAGGED POLYMORPHISM 28

III. IMPLEMENTATION OF POLYMORPHISM IN NAPIER88 31

A. POINTS OF CONVERSION 32

B. DATA STRUCTURES 36

C. NAPIER88 BLOCK RETENTION ARCHITECTURE 36

D. IMPLEMENTATION OF ATOMIC TYPES 38

E. IMPLEMENTATION OF DATA STRUCTURES 41

F. EFFICIENCY AND OPTIMIZATION 44

IV. IMPLEMENTATION OF POLYMORPHISM IN ML 47

A. BOXED AND UNBOXED VALUES 48

B. POINTS OF CONVERSION 49

Vll

C. IMPLEMENTATION OF ATOMIC TYPES 52

D. IMPLEMENTATION OF DATA STRUCTURES 57

E. EFFICIENCY AND OPTIMIZATION 62

V. IMPLEMENTATION RECOMMENDATIONS FOR POLYMORPHIC C 67

A. REVIEW OF IMPLEMENTATION TECHNIQUES 67

B. APPLICABILITY TO POLYMORPHIC C 69

C. SIMULATING PARAMETRIC POLYMORPHISM IN C 70

D. LEROY'S METHOD APPLIED TO POLYMORPHIC C 76

VI. FURTHER RESEARCH 79

A. TRANSLATION RULES 79

B. DATA REPRESENTATIONS 79

C. TYPELESS RUN TIME SYSTEM 80

APPENDIX 81

A. FORMALIZATION 81

B. TRANSLATIONS 86

LIST OF REFERENCES 91

INITIAL DISTRIBUTION LIST 93

Vlll

ACKNOWLEDGMENT

I wish to thank Prof. Dennis Volpano for stirring my interest in programming

languages and for his guidance in the preparation of this thesis. I am richer for having

been associated with him in this small way. I regret that the time has been so short.

I also wish to thank Prof. Thomas Wu. His many insightful comments greatly

improved this work.

I save special thanks for my lovely bride, Amy, whose love and encouragement

are integral to everything I attempt. This work is as much hers as it is mine.

IX

I. INTRODUCTION

Chapter I is divided into five sections. Section A introduces the functional

programming paradigm and discusses the directions and some obstacles faced by

researchers in the field. Section B is dedicated to concepts and definitions necessary to

the entire scope of the thesis. Section C discusses some software engineering issues

motivating research into polymorphic expression. Section D contrasts C and C++ with

functional languages and discusses several ways in which C/C++ can be improved.

Section E concludes the chapter with a brief introduction to Polymorphic C, a

polymorphic imperative language being developed as part of the Advanced Type Systems

Project at the Naval Postgraduate School and Florida International University [SmVo95].

A. FUNCTIONAL PROGRAMMING LANGUAGES

Much work has been done in the past decade on the development of advanced

programming languages, particularly functional languages such as SML/NJ, Haskell,

Miranda and Napier88. Functional languages all share the common paradigm that

function application is the primary method used for computation. This paradigm can be

contrasted to that of imperative languages such as Ada and C/C++, where the primary

method of computation is the manipulation of variables. In addition, functional

languages also exhibit a number of advanced features, such as mathematically rigorous

semantics, polymorphic typing, higher-order functions, unrestricted first-class values and

partial application of functions.

For many years, functional languages were of interest only to researchers. ML,

for example, was designed as the metalanguage for the Logic for Computable Functions

verification system. However, in the past few years researchers have initiated several

attempts to demonstrate the efficacy of these languages in the development of real-time

systems, systems-level programming and/or rapid prototyping.

As noted in both [HaL94] and [HuJ94], the application of functional languages to

large, real-world problems shows great promise due to the flexibility and structure of

functional languages. In one prototyping study [CHJ94], the functional programming

language Haskell was shown to be significantly superior to both C and Ada in ease of

programming for a real-world geometric server application. The primary factors in the

success of Haskell appear to be the effective use of polymorphic, higher-order functions,

partial application of functions and functions as first-class values.

Implementing the advanced features of these is challenging. To support

polymorphic functions, an implementation of a language must adopt some form of data

representation that allows a given computational object to assume values of many

different types. For example, a compiler may not statically assign the result of a

polymorphic function to a floating point register if that result may be of type other than

float. By the same token, if the result is of type float, it may be inefficient to represent it

uniformly and place it in a general purpose register.

Various language implementations have adopted different methods to deal

polymorphic functions. For example, SML/NJ uses a uniform data representation (heap-

allocated pointers) for all objects. While the scheme works, the need to continually

reference and dereference pointers is obviously inefficient. Other languages use different

schemes.

The focus of this thesis is to review several promising methods used to efficiently

implement polymorphic functions and to propose possible methods for the efficient

implementation of Polymorphic C.

B. CONCEPTS AND DEFINITIONS

We begin by providing some background information.

1. Type

Types in programming languages loosely correspond to sets. In set theory every

entity is either an element of a set or is a set of either elements or other sets. When

considering the universe (i.e., the set of all sets) within the context of a given domain it is

natural to organize it in different ways for different purposes. Types arise naturally in

such a classification effort as sets of entities which exhibit common usage and behavior.

In computer science, a type is a set of computational objects with uniform

behavior. For example, any object of type integer can be expected to observe the total

ordering one expects from the set of integers. Likewise, any object of type even_integer

(a sub-type of type integer) can be expected to be congruent to 0 (mod 2). Declaring an

object to be of a certain type is a declaration of membership in some appropriate set or

subset of interest and, indirectly, a declaration of the behavior ofthat object.

2. Monomorphic / Polymorphic Type Systems

Functions and procedures in conventional languages such as Ada are

monomorphic, meaning that each can be called with exactly one type. To illustrate,

consider the Ada implementation of the integer identity function shown in Figure 1.

function identity(value: integer) return integer is
begin

return value;
end;

Figure 1. Monomorphic Identity Function in Ada.

This function operates on an integer and returns an integer and is itself a

computational object which can be typed. In this case, it is of type in t -> int, read

as "mapping from an integer to an integer". As a result, the compiler will allow this

function to be applied only to objects of type int. If an equivalent function was required

for a different type (e.g., floats), a separate identity function would have to be written and

compiled for that type.

In this case, however, the behavior of the function is entirely independent of the

type of it's actual parameter. This is the case in many useful functions. One frequently

cited example is a linked list of records, where the act of appending a record to the end of

the list is entirely independent of the types of it's various fields, except for the one field

that contains a "next" pointer. Another example is a function which reverses the order of

the elements in an array; the functionality provided by the function is independent of the

type of the array elements.

By contrast to monomorphic languages, other languages such as ML allow

functions to have more than one type; these languages are said to be polymorphically

typed, ox polymorphic. The identity function, and an application of it, can be written in

ML as shown in Figure 2.

val identity = (fn x => x);

val three = identity(3);

Figure 2. Polymorphic Identity Function in ML.

The syntax in this case is straight forward; the identifier identity is bound to

the function which takes a parameter x and returns x. This function is a mapping from an

object of any type to an object of the same type. The type of the function is written as a

-> a, where a is a type variable representing any type. This function can therefore be

applied to any type and needs to be written and compiled only once.

Also of note in Figure 2 is the complete absence of explicit type information.

Nonetheless, ML's type inferencing system is able to correctly deduce the type of the

value assigned to three. Since the function is of type a -> a, and the actual parameter

is of type int, then a must equal int. That means, in turn, that the return value must be

of type int and three must be of type int, since that value is being assigned to

three . This sort of type inferencing is not necessarily unique to polymorphic

languages.

3. Strongly Typed Languages

One of the primary goals for anyone designing or implementing a language, be it

monomorphic or polymorphic, is to prevent a class of error known as type violations. A

simple example is given in the ML program shown in Figure 3.

val successor = (fn x => x + 1);

val three = successor(3.0);

Figure 3. Example of Type Violation.

In Figure 3, the integer successor function, successor is defined. Because the

right-hand operand of the addition operator is of type int, the type of successor is

inferred by the ML type inference system as being of type int -> int. This function,

then, is monomorphic; it operates only on integers.

However, the subsequent call to successor attempts to pass tosuccessora

value of type real. This is a type violation; the program's behavior would be

unpredictable if a compiler were to allow such errors in the general case. It is unclear, for

example, what the successor function should do if passed an object of type list or, for

that matter, of type automobile. Languages that strictly avoid such type violations are

said to be strongly typed.

4. Static vs. Dynamic Typing

To prevent type violations, one can impose a static type structure on a program.

Types are associated with all expressions (i.e., constants, operators, variables and

functions) in the program. Subsequent analysis of the program can then determine

whether type violations might arise during execution.

Sometimes, however, binding expressions to specific types at compile time is too

restrictive. This is certainly the case in a polymorphic language, where a given

expression (e.g., a polymorphic function) might assume an arbitrary number of types

during program execution. In this case, a polymorphic language might only require that

expressions are guaranteed to be type consistent. For example, if a particular application

of a polymorphic function returns an integer, then that return value should ultimately be

assigned only to expressions of type integer.

If the type of each expression can be deduced, or type consistency confirmed, at

compile time (i.e., statically) the language is said to be statically typed. This a useful

property for reasons of efficiency. For example, if the compiler can deduce that the value

returned from function f oo is of type real, it can place that value in a floating point

register vice a general purpose register. Subsequent floating point operations on that

value can be performed without first moving the value to an appropriate register.

On the other hand, some languages, primarily object-oriented languages such as

Smalltalk, adopt a policy where only the values are assigned a unique type. Variables

and parameters may take values of different types at different times. Because of this, the

values of operands must be checked immediately before the execution of any operation.

Such languages are said to be dynamically typed. [Wa90].

A language may remain strongly typed regardless of whether it is statically or

dynamically typed. The decision to make a language statically or dynamically typed is a

design decision orthogonal to making it strongly typed (which is always preferable) and

is beyond the scope of this thesis. Polymorphic C is a strongly and statically typed

language.

5. Classification of Polymorphic Forms

Cardelli and Wegner have classified several varieties of polymorphism [CaW85].

In their scheme, there are two major types of polymorphism, universal and ad hoc, each

of which is further subdivided. This classification scheme is described below.

a. Universal Polymorphism

Functions which exhibit universal polymorphism will generally work on

an infinite number of types. Such procedures are universally quantified on the types of

their arguments. In other words, expressing the type of the polymorphic identity function

as being of type a -> a is merely a short-hand way of stating Voc.(a -> a), which is read

as "for all values of type a, the function accepts a parameter of type a and returns a value

of type a". For this reason, formal parameters of type a are often referred to as

quantified parameters.

Stated in terms of implementation, a universally-polymorphic procedure

will execute the same code regardless of type.

(1) Parametric Polymorphism. In parametric polymorphism, a

polymorphic function has an implicit or explicit parameter which determines the type of

the argument for each application ofthat function. Functions that exhibit this form of

polymorphism are called generic functions. These functions generally do the same sort

of work independent of the argument type. The polymorphic identity function is one

example. The list reversal function shown in Figure 4, is another, as the work performed

by the function is independent of the type of the list elements.

Figure 4. List Reversal Function in ML.

It is worth noting that Ada's generic functions are a special case of

parametric polymorphism. The ML list reversal function is compiled only once and will

then operate correctly on lists of any type. An equivalent generic Ada function is not

directly executable; rather, it must be instantiated statically for each type of interest

creating, in effect, a set of functions with identical functionality but each operating on

lists of a specific type.

Function templates in C++ are also a special case of parametric

polymorphism. They are slightly different from Ada's generic functions, however, in that

the instantiations for parameters of different types are performed implicitly (i.e., by the

compiler vice the programmer). At run time one version of the function exists for each

parameter type of interest, as in Ada.

(2) Inclusion Polymorphism. Inclusion polymorphism was

introduced to model sub-typing and inheritance. As such, it is the type of polymorphism

generally referred to when discussing object-oriented languages. In this form, an object

can be viewed as belonging simultaneously to many different types, or classes.

In particular, an object of a derived class can be used whenever an

object of a base (ancestor) class is expected. For example, the integer 17 can be viewed

simultaneously as a prime integer, an odd integer and an integer between 10 and 20.

While inclusion polymorphism is interesting in it's own right, Polymorphic C does not

support object oriented features such as classes and inheritance and, so, the issue is

tangential to the thrust of the discussion.

b. Ad Hoc Polymorphism

Ad hoc polymorphism is obtained when a function works on several

different types but may behave in different, perhaps unrelated, ways for each type.

(1) Overloading. In overloading, the same identifier is used to

denote different functions. Any ambiguity is resolved explicitly or implicitly based on

the context of the function call. As such, it is purely a syntactic convenience for the

programmer.

A pervasive example is the use of the "+" operator. It denotes

integer addition, floating point addition and, in some languages, string concatenation. In

languages which allow the programmer to overload predefined operators, it could

potentially mean anything at all. In any case, in successive applications on values of

different types, a separate monomorphic function tailored to that type is invoked to do the

work.

It should be noted at this point that the generic functions found in

Ada, noted earlier to be a special case of parametric polymorphism, can also be

considered as simple overloaded functions. The precise classification (if one is required)

depends on one's point of view. At the source code level, genetics exhibit parametric

polymorphism; one piece of source code suffices for an unlimited number of types. At

the object code level, generics exhibit polymorphism based on overloading; a separate

piece of code is executed for each type, depending on context.

(2) Coercion. Coercion allows the programmer to omit

semantically necessary type conversions; the required conversions are inferred by the

compiler and inserted into the code. For example, in writing the C code char b =
x a' + 1; the programmer would be exploiting the fact that the machine representation

for characters (the familiar ASCII mapping) can be meaningfully interpreted as a integer

and that the result of the integer addition can, in turn, be meaningfully re-interpreted as a

character. The same result could have been achieved by making the coercions explicit, as

follows: char b = (char) ((int)'a' + 1) ;

As will be seen in later chapters, explicit coercion, also known as

type casting, is an important tool in the implementation of parametric polymorphism.

This point is worth making early. The concept of parametric polymorphism and the

implementation of parametric polymorphism are distinct issues.

C. THE ROLE OF POLYMORPHISM IN SOFTWARE ENGINEERING

Apart from pure theoretical interest, polymorphic functions have some pragmatic

utility to the field of software engineering, particularly when dealing with large

organizations and/or large programming projects. The motivation for polymorphic

functions are discussed here in the context of two software engineering goals - program

correctness and code reuse - and the common obstacle to each.

1. Goals

The need for polymorphic expression in programming languages derives from two

important but conflicting goals in the field of software engineering; the ability to prove

statically the correctness of a program and the ability to reuse programs or program

segments which are known to be correct.

a. Program Correctness.

Much of the work of proving a program correct has nothing to do with

language design or implementation. Certain classes of errors (e.g., faulty requirements

specification, errors in logic) cannot be addressed easily, if at all, at the level of language

design. Other classes of errors, however, such as type violations, can be detected and

prevented.

The compiler for a statically typed language can evaluate a program and

guarantee that all expressions are type consistent. In a large programming effort this

facility is extremely beneficial as separate programmers inevitably introduce new types

and/or new variables,. The cost of discovering a type error at run time can be several

times as expensive as discovering it at compile time, and is even more expensive if

discovered after product delivery.

b. Code Reuse

The desirability of code reuse - the ability to write routines for a

potentially unlimited set of applications - is obvious in the context of a large organization

10

and/or a large software development effort. Of particular interest are those routines

which can be reused when new data types are defined.

An Ada generic sort routine serves as a slightly anemic example of this

ability. Ada generics serve merely as templates for the construction of specialized

executable code and are, as such, reusable only at the source code level. To use such a

routine, the programmer must specifically instantiate a specialized version of it for each

data type of interest.

Thus, while there will exist some improvement in programmer

productivity, the executable may contain many sections of machine code with identical

functionality. In addition, each of these sections would have to be re-compiled for each

project. A solution whereby both source and machine code could be reused without

duplication - and perhaps without recompilation - would be preferable.

2. Obstacles

Static typing tends to prevent code reuse while reusable programs are harder to

statically type check. A monomorphic routine to sort integers, for example, is easy to

type check but could not subsequently be used to sort strings. At the same time, in the

absence of a strongly typed polymorphic type system, a reusable routine to sort elements

of an unspecified type might easily be used (misused) on almost any data structure,

however inappropriately.

Polymorphic type systems try to reconcile these two goals by providing all of the

type safety of a statically-typed monomorphic language and most of the code re-use

flexibility of an untyped language [Car84].

D. C/C++

Despite the many powerful features of functional languages, they are unlikely to

fall into widespread general use. Languages such as C are extremely popular and already

very capable in the domain of real-world, systems-level programming. It is unlikely that

a significant number of organizations would discard the enormous investment of

11

resources in tools and programmer training in favor of any current functional language.

A more pragmatic approach might be to incorporate the results of research in functional

languages into imperative languages such as C and C++.

Specifically, one might improve C/C++ in the following ways: (1) more rigorous

type checking, (2)more robust polymorphism and (3) the implementation of first-class,

higher-order functions.

1. Type Checking

Despite claims to the contrary [Str91], C/C++ too often behaves as a

weakly-typed language. C incorporates an unrestricted coercion mechanism, where by a

value of one type is automatically interpreted as belonging to another type whenever

necessary and possible. Consider the C++ program in Figure 5.

Here, the function identity is the monomorphic integer identity

function with type int -> int. Function main then invokes the identity function

with two separate non-integer values. The output is as follows:

X: 2
Y: 65
Clearly, this program is incorrect. The value 2.9 was coerced to an integer

representation (by truncation), while the character 'A' was coerced to it's integer ASCII

representation. An ardent C/C++ programmer might argue that implicit coercion of this

form ("in the right hands", of course) is a feature vice a deficiency. However, some

programs are not "in the right hands" and the detection of precisely this class of error is

why type checking has been so useful in programming languages.

2. More Robust Polymorphism

C is a monomorphic language. C++ is termed a polymorphic language,

but the form of polymorphism is more anemic than found in most functional

programming languages. C++ provides function and class templates and, like all other

object-oriented languages, allows inheritance between classes. These are legitimate

forms of polymorphism, however, extending C++ to allow for ML-style parametric

12

polymorphism would allow for much greater flexibility in coding and far greater ease in

code reuse.

int identity(int value) {return value;}

void main()
{
int X = identity(2.9);
cout « "X: " « X « endl;

int Y = identity(W);
cout « "Y: " « Y;

Figure 5. Application of Monomorphic Identity Function in C++.

The traditional method of achieving parametric polymorphic expression in

C/C++, namely the use of pointers to type void, is instructive. In Figure 6, the identity

function, id, is declared as one which takes a pointer to void and returns that pointer as a

result. As such, id can be viewed as a polymorphic function of type a -> a. Before

calling the function, it's parameters are referenced and the resulting pointers are cast as

pointers to void. Following the call, the returned pointer is cast to it's proper type and

dereferenced to obtain the required value.

Two points are worth making in advance. First, the pointer returned from

id can be interpreted in any way, including an inappropriate way, as seen in the last call

to id in Figure 6, where the result of passing a character to the identity function is cast as

a float.

Second, this general mechanism - converting an object to some uniform

representation before a function call then carefully reconverting it to its regular form after

the call - is exactly the conceptual scheme (with some refinements) used by many

13

functional programming languages to implement parametric polymorphism. The

implementations of these languages eliminate the need for explicit casting on the part of

the programmer.

void* id(void* x) {return x; }

void main()
{
int i = 123;
char c = AA' ;
float f = 123.4;

int intResult = *(int*) (id((void*)&i))
char charResult = *(char*) (id((void*)&c));
float floatResult = *(float*)(id((void*)&f))

float badResult = *(float*)(id((void*)&c))

Figure 6. Emulating Parametric Polymorphism in C.

3. Higher-Order Functions and First-Class Functions

Functional languages treat functions as first-class values. As such, they

can be passed as parameters, returned as function results, be included in composite

values, and so forth, and are referred to as first-class functions. A first-orderfunction is

one whose parameters and result are non-functional. By contrast, a higher-order function

is one which can take another function as a parameter and/or return a function as a result.

[Wa90].

C/C++ treats functions as first-order, second-class values and can be

improved by allowing functions to be expressed as higher-order, first-class values.

Consider the ML code in Figure 7 which shows a common use of higher-order, first-class

functions to apply a given function to each element in a list.

14

fun map (f, nil) = nil |
map (f, head::tail) = f(h)::map(f, tail);

Figure 7. Example of Higher-Order Function in ML. From [St92].

The function map is very interesting and is indicative of the style and

power of functional languages. First, though, a brief description of the syntactic elements

is needed. The keyword nil signifies the empty list. The symbol ": :" is the list

catenation symbol with the identifier to the left of the symbol representing the element at

the head of the list and the identifier to the right representing the rest of the list. In other

words 1::[2,3] = [1,2, 3]. The symbol "|" simply means "or".

The function map, then, is defined as the function that takes as a parameter

a function and a list and returns a list. The list may be empty, in which case it is returned.

The returned list is computed by applying the supplied function to the element at the head

of the list and appending the result to the front of a new list returned by a recursive call to

map on the tail of the list.

Several things are of note in this example. The first is the relative ease

with which a function of this sort can be expressed once one is familiar with the style and

syntax. This occurs relatively naturally as a result of the Prolog-style pattern matching

used in ML expressions.

The second is the complete absence of explicit type information. In this

case, the function is both completely polymorphic and completely type consistent. Based

solely on the structure of the function, the ML type system is able to deduce that map is

of type (a -> ß) * a list -> ß list. As such, it takes as arguments a function

of type a - > ß and a list of type a list and returns another list of type ß list.

15

An application of function map might be as shown in Figure 8 with the result newList

= [2, 3, 4]oftypeint list.

fun successor (x) = x + 1;

val intList = [1,2,3];

val newList = map(successor, intList);

Figure 8. Application of Function Map.

The function successor is the integer successor function defined in

ML's functional notation; it is read as "bind the identifier successor to the function

which takes a parameter x and returns the value x + 1. Because of the integer literal in

the function body (x + 1), the type system is able to determine that successorisof

type in t -> int. In the context of the type assignment for map, then, a = ß = int.

In the second line, the identifier intList is declared and defined using a

list aggregate as a list with elements of type int ([] are ML's list construction

operators); it is assigned the type int list.

The application of map, then, is of type (int -> int) * int list

- > int list, which is completely consistent with both our expectations and the

quantified type assigned to the function map.

In C/C++, however, the only two things one may do with a function are a)

call it or b) take its address [Str91]. To avoid the complexity associated with

manipulation of lists (which are not a base type in C++) let's consider a simpler example.

The ML and C++ versions of the monomorphic higher order function, HOF, are shown in

Figure 9.

The ML code is relatively straight forward. As in the case of the function

map, the programmer is allowed to operate at a relatively high level of abstraction.

16

The C++ code, on the other hand is much more tedious and error prone in

that the programmer is not allowed to abstract away from the underlying mechanisms of

the language. In this case, since functions are not first-class values, the programmer must

explicitly declare a new type, INT2 INT, representing a pointer to a function of type

int -> int. Function HOF is then defined as one which takes a pointer to a function

of type INT2 INT and an integer. The function is then applied, via the pointer, to the

integer.

Of note is that the C version of HOF is not truly higher-order since neither

of it's arguments are functions; it only simulates the behavior of a higher-order function.

Also, although type information has been supplied explicitly throughout the routine, in

the end, type errors of the class described earlier (e.g., int thelnteger = W) are

still not prevented due to C's unrestricted coercion mechanism.

ML: fun Double (x) = x * 2;

fun HOF (f, x) = f (x);

val Doubleint = HOF(Double, 3);

C++: int Double(int x){return x * 2;}

typedef int (*INT2INT)(int);

int H0F(INT2INT f, int x){return f(x);}

int Doubleint = HOF(Double, 3);

Figure 9. Comparison of Higher-Order Functions in ML and C++.

Simulating polymorphic higher-order functions equivalent to the ML map

function are even more difficult in C. Doing so requires frequent referencing and

17

dereferencing, casting and recasting, in order to achieve the same results as are achieved

without effort in a functional language. Specific examples are given later.

One further benefit of higher-order functions is worth mentioning. In

addition to accepting functional arguments, higher-order functions can also return

functional results. This leads to the potential for huge benefits in expressiveness and

programmer productivity. One can imagine setting out to build a library of trigonometric

functions, for example. After carefully designing and testing the function sin (x), one

could then simply define cos (x) as follows: cos(x) = sin(x+90).

Hudak and Jones have reported significant success using this type of

approach in large, real-world problems [HuJ94].

E. INTRODUCTION TO POLYMORPHIC C

The following introduction to Polymorphic C borrows heavily from the initial

paper on Polymorphic C, [SmVo95].

Polymorphic C is a polymorphic dialect of C. It is designed to be as close as

possible, semantically, with the original K&R C [KR78]. As such, it is stack-based with

pointers, variables and arrays. Pointers are first-class values and can be explicitly

dereferenced. Variables are second-class values and are implicitly dereferenced. It has

the same pointer operations as C, namely the pointer dereferencing operator (*), the

address of operator (&) and pointer arithmetic.

Unlike C, it incorporates an advanced polymorphic type system similar to those

found in functional programming languages and allows first-class, higher-order functions.

And, unlike functional languages, the type system also addresses the polymorphic typing

of pointers. The combination of these enhancements results in a language with the

flexibility of C and the natural, type-sound polymorphism of ML.

To accomplish this result, the designers imposed one key restriction: "The free

identifiers of any lambda abstraction must be declared at top level". Informally, this

means that any object used by a function must be either local to the function (i.e., bound

18

to the function abstraction and having a lifetime that ends upon return from the function)

or global (i.e., declared at top level).

The internal static variables of C are an example of the first type of violation.

They are declared locally but persist after return from the function. Polymorphic C, then,

does not support internal static variables; rather, they must be replaced with uniquely-

named global variables to achieve the same functionality.

The second type of violation can occur when function declarations are nested.

This violation cannot occur in C but, for the sake of completeness, Figure 10 gives a

sample Ada program which highlights this type of violation. Inside f oo a variable

f oo_x is declared and initialized. Then, also inside f oo, the function bar is declared.

Function bar uses the variable f oo_x (which is visible to it) in it's body.

In this case, the variable f oo_x is free in function bar but is not global. This is

an example of the second type of violation of the restriction on lambda abstractions in

Polymorphic C.

Beyond these simple examples, the restriction on lambda restrictions has only one

other consequence. Most functional languages allow partial application (currying) of

functions; Polymorphic C does not allow curried functions. Since this issue is tangential

to the implementation of polymorphism, it is included here only for completeness and

will not be discussed further.

The only other issue of immediate interest deals with the passing of parameters.

In most imperative languages, as in C, the formal parameters of a function are local

variables. In Polymorphic C they are constants.

19

procedure foobar is
function foo return integer is

foo_x: integer := 123;
function bar return integer is
begin

return 2 * foo_x;
end;

begin
return bar;

end;
begin

put(foo);
end;

Figure 10. Violation of Polymorphic C Restriction on Lambda Abstractions.

20

II. IMPLEMENTING POLYMORPHISM

Chapter I, Section B, discussed the various types of polymorphism, which is

generally categorized as either universal or ad hoc. Universal polymorphism is further

categorized as either parametric (generic) polymorphism or inclusion polymorphism; ad

hoc polymorphism is further categorized as either overloading or coercion.

This chapter begins with a review of three techniques for implementing

polymorphism: textual polymorphism, uniform polymorphism and tagged

polymorphism. These terms are unfortunate in that they seem to be additional forms of

polymorphism but they are not. Rather, they are general techniques for implementing

polymorphism.

As seen earlier, the precise meaning of polymorphism in a system is interpreted

with respect to a given level of abstraction. For example, Ada's generic functions could

be viewed a special form of parametric polymorphism because the source code was

independent of the type of the parameters and return values. At the same time, they could

be viewed as a special case of overloaded functions since the underlying machine code

was dependent on type.

When discussing the implementation of polymorphism, it is necessary to first

define the level of abstraction at which one is operating. [MDCB91] takes a pragmatic

approach to this issue by defining the possible levels of abstraction based on whether or

not the source code, machine code and/or underlying store representations are dependent

on data type. Table 1 outlines the sensible combinations.

In order for any polymorphism to exist, the source code of the program must

contain expressions which are independent of data type. If this is the limit of

polymorphic expression in an implementation, it is termed textual polymorphism. If both

source and machine code are independent of data type, but store representations may be

21

Textual Tagged Uniform

Source Code Independent Independent Independent

Machine Code Independent Independent

Store Representation Independent

Table 1. Levels of Abstraction for Implementing Polymorphism.

different for each data type, it is termed tagged polymorphism. If source code, machine

code and store representations are all independent of type, it is termed uniform

polymorphism. Each of these is discussed separately in following sections.

A. TEXTUAL POLYMORPHISM

In order for any polymorphism to exist, the source code of the program must

contain expressions which are independent of the type of data. If this is the limit of

polymorphic expression, it is termed textual polymorphism. A generic function in Ada, a

C++ template and an overloaded "+" operator are all examples of this form of

implementation.

Since textual polymorphism applies only to source code, the compiler is free to

generate optimum code and optimum data representations for each of the specializations

of the function. For example, the polymorphic identity function Xx. x might be invoked

with parameters of three different types within a given compilation unit (e.g., x: int,

x: string, x: empRec). A textual polymorphic implementation would generate three

specialized functions, X (x: int) .x, X (x: string) .x and X (x: empRec) . x; the

function that is actually called would be determined statically from the context of the call.

The space overhead associated with this implementation technique can be quite

severe. Within a given compilation unit there are significant space inefficiencies if

22

several large procedures must each be specialized for many different types. Even worse

is the case of separate compilation, where the number of types is not known statically.

[MDCB91] notes that, within a compilation unit there is an upper bound on the

number of specialized forms that must be generated. In theory, this number could be

quite large. If a function takes p quantified parameters, each of which might be of n

possible types, there are np possible specializations. For example, the function

X(x:a, y:ß, z:x).[x, y, z], which takes three quantified parameters x, y, and

z of types a, ß, and %, respectively, and returns a record of three fields containing the

values of those parameters, would have n possible specializations, where n is the number

of types in the system.

In practice, the compiler would have to generate, at most, one specialized form of

the procedure for each static call. Some of these would share representations, further

limiting the number of specializations required. However, this would not be the case for

separate compilation. Since the context of the call would not be known statically, the

compiler would have little choice but to generate all possible forms of specialization.

The complexity of the problem can also become significantly greater in the case

of conditional function calls or in the case where a polymorphic function are passed as

parameters to other functions. Consider the Napier88 code of Figure 11.

A polymorphic procedure, first, quantified on types a and b, is defined as one

which takes as parameters W of type a and X of type b. The ellipses indicates some

arbitrary procedure body. Then another polymorphic procedure, second, is similarly

defined; it is quantified on types s and t, and takes two parameters, Y and Z of those

types, respectively. Inside the body of second exists a conditional. Depending on the

truth value of condition, the procedure first is called in one of two ways.

23

let first = proc[a, b](W:a; X:b) ...
let second = proc[s, t](Y:s, Z:t) ...

if <condition> then first[s, t](Y, Z)
else first[t, s](Z, Y)

Figure 11. Exponential Expansion of Code. After [MDCB91].

In this code fragment, for each call of second, there are two possible calls of

first. Since the truth value of condition is not known statically, two

specializations of first are required for each specialized call to second. The total

number of specialized forms is found by multiplying the number of different

specializations in the call chain. Introducing the procedure third, shown in Figure 12,

would cause four specializations of first to be generated for each specialization of

third (two specializations of second and, for each specialization of second, two

specializations of first).

let third = proc[x, y, z](X:x, Y:y, Z:z)
if <condition> then second[x, y](X, Y)

else second[y, z](Y, Z)

Figure 12. Multiplicative Expansion of Code Due to Call Chain.

Passing polymorphic procedures as parameters also introduces a multiplicative

growth in code, though to a lesser extent. The Napier88 code fragment of Figure 13

illustrates this.

24

let id = proc[u](x: u -> u); x

let foo = proc[s](y:s; bar: proc[t](t -> t) -> s)
bar[s](y)

let oneTwoThree = foo[int] (123, id)

Figure 13. Multiplicative Growth of Code Due to Polymorphic Higher-Order Functions.

The syntax and structure of the Napier88 code in Figure 13 requires some

explanation. Function id is defined as a polymorphic function quantified on type u; it

accepts a parameter, x, of type u and returns a value of type u, that value being x.

Function foo is defined as a polymorphic, higher-order function, quantified on

type s; it accepts as parameters a value, y, of type s, and a polymorphic function, bar,

quantified on type t, which accepts and returns a value of type t. The function foo

returns a value of type s, that value being the result of applying bar to y.

Lastly, the variable oneTwoThree is declared and assigned the value resulting

from applying foo, specialized to type int, to the value 123 and the function id. As

this example demonstrates, for each specialization of foo, there must be a corresponding

specialization of bar.

Even in cases where the space complexity associated with textual polymorphism

can be accepted, there are additional considerations. For example, the code generation

scheme discussed above will not work when polymorphic procedures are first-class

values [MDCB91].

When functions are first-class, functions may be assigned and substituted for one

another if of the same type. In the examples considered thus far, all functions were

statically defined; that may not be the case for first-class functions. Consider Figure 14

where a first-class polymorphic function, foo, is declared as one of two possible

functions. If at run-time condition is true, the identifier foo is bound to the

25

polymorphic function, quantified on type t, which returns the first of it's two actual

parameters; otherwise it is bound to the polymorphic procedure which returns the second

of it's two parameters. The type specializations are known statically and the compiler

can determine that function f oo has to be specialized prior to call, but it cannot

determine statically which of the two possible bindings to specialize.

let foo = if <condition> then procft](a, b: t -> t); a
else proc[t](a, b: t -> t); b

let fooint = footint](1, 2)
let fooreal = foofreal] (1.0, 2.0)

Figure 14. Example of First-Class Polymorphic Procedure.

One solution might be to generate specializations for both potential bindings and

have the run-time system pass pointers the proper code. This solution, though, suffers

from the same space complexity considerations discussed previously in the context of

static specialization.

Another solution might be to invoke the compiler dynamically whenever a new

specialization is required. In other words, the function foo would not be compiled at all

until the proper binding has been determined. This solution could make the call to foo

very slow and inefficient.

In summary, textual polymorphic implementations demonstrate the ability to

produce optimum code and data representations for each application of a polymorphic

procedure and can be used to implement both ad hoc and uniform polymorphism. Major

disadvantages, however, include a potentially large amount of generated code for each

application of a polymorphic procedure and an inability to deal efficiently with first-class

polymorphic procedures.

26

B. UNIFORM POLYMORPHISM

If both the source code and the machine code for an implementation are

independent of the data types being manipulated, and if the store representation is

uniform for all data types, the polymorphic implementation is termed uniform

polymorphism. ML uses this implementation technique. The function reverse of

Figure 4 is written only once, compiled only once, and operates on any list, independent

of the data type of it's elements.

The major trade-off for this form of implementation is that for uniform code to

function correctly on all data types, the values for all data types must have a uniform

representation (i.e., must all be of the same size). Using the list reversal function as an

example, the underlying machine code must eventually swap around bytes in storage to

perform it's work; it must, as a minimum, know how many bytes to swap. If the code is

to work uniformly on all data types (e.g., lists of integers, lists of reals, lists of strings,

even lists of lists), all data types must be represented by the same number of bytes.

This uniform representation may not be optimal for some types. For example, if a

store size of one byte is used, it becomes difficult to implement double word floating

point numbers. If a store size of eight bytes is selected, then the implementation of short

integers and characters becomes inefficient.

A second complication arises in the implementation of compound data types.

Because a fixed-sized data representation is required for uniform polymorphism and

because compound data types can be arbitrarily large, pointers are the only efficient way

to refer to them. The alternatives are clearly more inefficient or impossible: choosing a

uniform representation large enough to hold any arbitrarily large data structure is

impossible; choosing a representation large enough to hold the largest object in a system

would be possible but would be extremely inefficient and, in the case of separate

compilation, might be unknown. A third alternative, selecting a representation of some

suitable arbitrary size and requiring all data objects to "fit" might also be possible but

would add undesirable complications at the time of creation or reference.

27

If objects of compound data types are to be represented by pointers, and the

representation is to be uniform for all data types, then all data objects must be represented

by pointers. This adds a level of indirection to the implementation of every object in the

system, including simple scalar objects such as integers. In an environment with implicit

garbage collection, it also necessitates garbage collection on unused objects.

Moreover, the overhead arising from uniform data representation will exist in the

system even if polymorphic expression is not required in a particular module. The mere

potential for such expression is sufficient to invoke the requirement.

In summary, uniform polymorphism is relatively easy to implement and is

relatively efficient with respect to space. However, all objects must be represented in a

uniform, non-optimal form irrespective of the degree of polymorphism in the system.

C. TAGGED POLYMORPHISM

In some systems the source code and the machine code are both independent of

the data type being manipulated but the data representations, and possibly the behavior of

the program, are nonuniform for different data types. Such systems are instances of

tagged polymorphism. In a tagged polymorphic implementation, each data item is tagged

with some form of type information. The machine code is constructed to use this type

information to determine dynamically which of several type-dependent instructions to

execute.

Examples of this form of polymorphism can be found in the implementation of

inclusion polymorphism in many object-oriented languages. In the language Actor, for

example, each object contains a method dictionary, with method names as keys and

pointers to methods as values, which served as an address map for it's methods. The

static machine code for searching the method dictionary is the same for all methods in all

objects but the dynamic behavior of the system depends on the value returned from the

search. In this case, the method dictionary is effectively a tag.

Tagged polymorphism, used in this fashion, can be seen as a means of

implementing a built-in form of ad hoc polymorphism (overloading and coercion). The

28

common methods of a set of objects derived from a common super-class are, in a sense,

simply overloaded functions. In the case where a method of the super-class is not

redefined by a sub-class, the method of the super-class is invoked; in effect, the object of

the sub-class is coerced to an object of the more general super-class.

Another example, given in [MDCB91], is the tagged architecture of the

Burrough's B6500. That system included several polymorphic machine instructions,

such as plus, minus, times, etc. Data was tagged according to it's type and when an a

plus operation, for example, was issued, the processor would inspect the tag and perform

either integer or floating point addition, depending on the value of the tag.

Tagged polymorphism can also be used to implement parametric polymorphism.

However, it may be unacceptable to map an infinite number of types onto a finite number

of tags. Still, to the extent that such a mapping is feasible for a given system, parametric

polymorphic expression is possible.

In summary, tagged polymorphism can implement ad hoc, inclusion and

parametric polymorphism. It is efficient with respect to the amount of generated code

and can operate with non-uniform data representations. However, the polymorphic

expressions are built-in and, because all data objects must be tagged and those tags

frequently inspected, the tagging system must be very efficient.

29

30

III. IMPLEMENTATION OF POLYMORPHISM IN NAPIER88

This chapter presents a case study of the polymorphism implementation

techniques used in Napier88. Chapter IV presents a case study of the polymorphism

implementation techniques the recently proposed extensions to ML [Le92]. Both are

functional languages with full polymorphic higher-order, first-class functions. While

neither of the implementations studied here are directly transferable to Polymorphic C,

many of the concepts and motivations behind these techniques are useful in developing

an implementation strategy for Polymorphic C.

Napier88 uses a variant of the tagged polymorphic implementation technique

using procedure closures to capture type information. The primary thrust of the approach

is based on the requirement that only polymorphic procedures should pay the penalty for

polymorphic expression and the observation that only the polymorphic expressions

within polymorphic procedures need exhibit uniformity of behavior. Outside a

polymorphic procedure, this uniformity is not necessary.

All data objects are stored in their system-dependent, optimal representations

(called concrete form) and can be manipulated by monomorphic procedures in that

concrete form. Objects which are passed to quantified formal parameters of a

polymorphic procedure are coerced to a uniform representation (e.g., pointers) on

entering the polymorphic procedure and coerced back to their concrete representation on

exit from the procedure. Within the polymorphic procedure, the objects are manipulated

using their uniform representation.

The following discussion closely follows [MDCB91] which contains a complete

description of the implementation of polymorphism in Napier88.

31

A. POINTS OF CONVERSION

As stated previously, objects with concrete representation must be coerced to

uniform representation if passed to the quantified formal parameter of a polymorphic

procedure. This coercion might be performed either before or after the call.

For a programming language that allows the combination of first-class procedures

and type specialization without call, the compiler is unable to determine statically

whether a procedure being called is polymorphic or monomorphic. This is the case in

Napier88. Consider the Napier88 code in Figure 15.

'

let first = proc[t](a, b: t -> t); a

let either = if <condition>
then first tint]
else proc(a, b: int -> int); b

let two = either(2,3)
1

Figure 15. First-Class Procedure and Specialization Without Call. From [MDCB91].

In this code, the procedure first is a polymorphic procedure which returns the

first of two quantified parameters. At the time of the call either(2,3),if

condition is true the identifier either is bound to the first-class polymorphic

procedure first, specialized for type integer, which returns the first of two integer

parameters. Otherwise, it is bound to a monomorphic procedure of type int -> int

which returns the second of two integer parameters.

In either case, the compiler does not know statically whether the procedure being

called is polymorphic or monomorphic and therefore cannot determine statically the

proper representation (uniform or concrete) for the actual parameters. If a conversion is

performed and the function turns out to be monomorphic, therefore expecting concrete

actual parameters, the results are unpredictable. This problem could be solved by

32

■

compiling monomorphic functions to accept uniform values and convert them as

required, but that solution violates the requirement that only polymorphic functions suffer

polymorphic overhead.

As a result, the conversion to uniform representation must be delayed until after

the call. If the procedure turns out to be polymorphic, the conversion would have to

occur within the polymorphic procedure itself.

In general, there are four cases of interest when passing parameters to a

polymorphic procedure. These are shown in Table 2 and discussed in the following

sections.

Concrete actual parameter passed to concrete formal parameter.

Concrete actual parameter passed to quantified formal parameter.

Quantified actual parameter passed to concrete formal parameter.

4 Quantified actual parameter passed to quantified formal parameter.

Table 2. Passing Parameters to Polymorphic Functions.

1. Concrete Actual Parameter Passed to Concrete Formal Parameter

This case is trivial since there is no polymorphism involved. The compiler is free

to generate monomorphic code.

2. Concrete Actual Parameter Passed to Quantified Formal Parameter

In this case, for every formal parameter of a quantified type, the concrete actual

parameter must be converted inside the polymorphic procedure to the system's uniform

representation and the result - if of a quantified type - must be converted back to it's non-

uniform representation on exit. Figure 16 shows an example.

On the calls first [int] (1, 2) and second [int] (1, 2), the first

formal parameter x is of quantified type, so the first actual parameter, 1, is converted to

the system's uniform representation. The second formal parameter y, however, is of

33

let first = proc[t](x: t; y: int); x
let second = proc[t](x: t; y: int); y

let one = first[int](1, 2)
let two = second[int](1, 2)

Figure 16. Concrete Actual Parameter Passed to Quantified Formal Parameter.

concrete type, so the second actual parameter, 2, is left in it's optimum, concrete

representation. In this regard, the two calls are identical; the first actual parameter is

manipulated in the system's uniform representation while the second actual parameter is

manipulated using it's concrete representation.

On exit, however, the two procedures behave differently. In the case of the call

first[int](l, 2), the return value, 1, is of quantified type and must be converted

back to it's original representation. In the call second [int] (1, 2), the return value,

2, is of concrete type and, so, need not be converted.

In all instances of this case, specialized code is required to convert from any

representation to/from the uniform representation. All other code in the polymorphic

procedure is uniform.

3. Quantified Actual Parameter Passed to Concrete Formal Parameter

As seen above, a polymorphic procedure converts objects passed via quantified

formal parameters to a uniform representation. If the polymorphic procedure

subsequently passes that object to another procedure(be it monomorphic or polymorphic)

via a concrete formal parameter, the object must be converted to it's concrete

representation prior to the call. Figure 17 shows an example.

Here, procedure f oo is quantified on type t and takes as quantified parameters x,

of type t, and y, a procedure of type t -> t. Since both parameters are quantified,

both are converted to uniform representation on the call to f oo. The procedure returns a

quantified value which is obtained by applying the second parameter to the first.

34

let int_id = proc(x: int -> int); x

let foo = proc[t](x: t; y: proc(t -> t) -> t); y(x)

let three = foo[int](3, int id)

Figure 17. Quantified Actual Parameter Passed to Concrete Formal Parameter.

In this case, however, the second parameter is the monomorphic integer identity

function which expects to be passed an integer in concrete form. Therefore, the actual

parameter must be converted to concrete form prior to the call and the return value must

be reconverted to uniform form after the return. Prior to returning from foo, the result is

again converted to concrete form.

4. Quantified Actual Parameter Passed to Quantified Formal Parameter

Polymorphic procedures expect to convert their parameters to uniform

representation on entry. This means that a polymorphic procedure which passes an object

with uniform representation to a procedure via a quantified parameter must pass that

object in it's concrete representation. The behavior is the same as given in the third case;

the object must be converted to concrete form prior to the call and reconverted following

return. Figure 18 illustrates this case.

Here, the polymorphic procedure id2 is the polymorphic identity function,

quantified on type t. It's return value is obtained by invoking procedure idl, another

version of the polymorphic identity function. At the time of the call, id2 is initialized at

type int and, so, idl is also initialized at type int. As a result, idl expects a

parameter of type int and, being a polymorphic procedure, it expects convert that

integer to uniform representation. It is necessary, then, for id2 to convert the actual

parameter y to the concrete representation for integers prior to the call to idl.

35

let idl = proc[s](x: s -> s); x
let id2 = proc[t](y: t -> t); idl[t](y)

let two = id2[int](2)

Figure 18. Quantified Actual Parameter Passed to Quantified Formal Parameter.

B. DATA STRUCTURES

The preceding discussion on points of conversion dealt solely with atomic types.

The introduction of data structures raises one minor additional issue, best illustrated by an

example, shown in Figure 19.

Here, the data structure tuple is defined and is given a constructor called

make_tuple. Both are quantified with respect to their formal parameters. The call

make_tuple [int, int] (1,2) leads to the creation of the ordered pair (1, 2).

This single data structure might be referenced after creation by both monomorphic

and polymorphic procedures. If referenced by a polymorphic procedure, the individual

fields of the tuple must be referenced using a uniform representation. If referenced by a

monomorphic procedure, it's fields must be referenced using the system's concrete

representation.

The solution to this problem is to view access to compound data structures as a

special case of parameter passing. They are always created and stored using concrete

representation to allow access by monomorphic procedures. When they are accessed by a

polymorphic procedure a conversion takes place within the polymorphic procedure.

C. NAPIER88 BLOCK RETENTION ARCHITECTURE

If a language does not incorporate block retention, the memory reserved for

variable declared within a block may be reclaimed on exit from the block. Languages

that support arbitrary higher-order functions, as does Napier88, must incorporate a block

retention architecture, meaning that variables declared within a block may persist after

36

type tuple[s, t] is structure (first: s; second: t)

let make_tuple = proc[u, v](a:u; b:v -> tuple[u, v])
tuple[u, v](a, b)

let this tuple = make_tuple[int, int](1, 2)

Figure 19. Creation of Data Structure by Polymorphic Procedure.

exit from the block. An example might be the internal static variable found in C. The

example of Figure 20 illustrates this.

The block defined by random contains the declaration of the variable seed. If

random is to work correctly, seed must persist between calls to random. If it does not,

random will return the same value each time it is called. As will be seen later, internal

static variables such a seed are important to the Napier88 implementation of

polymorphism.

It is also worth noting that Polymorphic C does not support internal static

variables. Such variables would have to be declared as uniquely-named global variables.

Being global, their lifetime is that of the program, so the requirement for block retention

does not apply to Polymorphic C.

let random =
begin

let seed := 2111
proc(-> int)
begin

seed := (519 * seed) div 8192
seed

end
end

Figure 20. Block Retention. From [MDCB91].

37

D. IMPLEMENTATION OF ATOMIC TYPES

Earlier discussions with respect to points of conversion made clear that under the

constraint imposed by the Napier8 8 implementors (only polymorphic procedures pay a

penalty for polymorphism), polymorphic functions were required to convert their formal

parameters to and from concrete and uniform representations. But how is this

accomplished?

Clearly, if a polymorphic procedure is to convert a data object from uniform to

concrete form prior to return, it must know the concrete form to which it should be

converted. This functionality cannot be hard-coded in the polymorphic procedure (e.g.,

always convert to concrete representation for integers) because the function is

polymorphic and must work with values of any type.

The tagged implementation discussed in Chapter II might be used for the

conversion but data tagging is contrary to the requirement that only polymorphic

functions suffer overhead due to polymorphism; if all data is tagged to support

polymorphism, then the entire system, including the monomorphic part, suffers the

overhead associated with polymorphism.

The only other solution is for the polymorphic procedure to receive, in some

manner, information about the concrete types of it's quantified parameters. One possible

solution might be to simply pass type information to the function as a separate parameter.

This will work, but the implementors of Napier 8 8 chose an alternative solution which

takes advantage of block retention in the language (i.e., internal static variables). This

helps avoid having to pass an extra parameter at each function application.

In Napier88, a polymorphic procedure is compiled into one in which the type

parameter is represented by an integer in an outer level (envelope) procedure of the same

name. The polymorphic executable code is bound to the envelope procedure, with the

result that the type tag is contained in its closure. For example, consider the arbitrary

38

polymorphic function f oo as defined and applied in Figure 21(a), which would be

compiled into that shown in Figure 21(b).

(a) let foo = proc[t](x: t -> t); ...

let a = foo[int](3);

(b) let foo = proc(tTag:int -> proc(a
proc(x:a -> a); ...

-> a))

Figure 21. Napier88 Polymorphic Identity Function. After [MDCB91].

In Figure 21(b), t Tag is an integer encoding of the quantifier's specialization

type; it varies for each call. For example, a particular system might have a mapping

represented by the following case statement for the concrete type t:

let tTag = = case T of:
T = int :1
x = string :2
T = real :3

default :0

The symbol a represents, at any type specialization, the concrete type of the quantified

type [MDCB91]; in other words, it is a type variable.

For clarification, consider the call f oo [int] (3) of Figure 21(a), which is

compiled into two calls. The first is equivalent to let int_foo = foo [int]. This

creates an envelope procedure of type proc (tTag: int -> proc (a -> a)) with

the type tag for type int; the result is a monomorphic procedure called int_f oo. In

this case, int_f oo is monomorphic code which, for this specialization, happens to have

the type tag for int contained in an internal static variable. The original polymorphic

code for foo is dynamically bound to this envelope procedure; thus it has the type tag

for int in its closure.

39

The second call is equivalent to int_f oo (3), which calls the polymorphic

executable code with the concrete parameter 3. After the call to the polymorphic

procedure, the concrete parameter must be converted to the uniform data representation.

To do this, a special built-in generic instruction, called convertToPoly(tTag), inserted

into the body of foo at compile time, is invoked. This instruction uses the type tag

contained in the closure of the polymorphic code to convert the concrete parameter to the

system's uniform representation. Prior to exit from the polymorphic code, the built-in

generic instruction convertFromPoly(t Tag) is executed, again using the type tag in the

code's closure to perform the proper conversion. In this way, the polymorphic code can

remain uniform for each specialization yet perform conversions to and from concrete

representations of any type.

Thus, the call f oo [int] (3) would result in the following chain of events. An

envelope procedure, call it int_f oo, would be created and the integer encoding for type

int would be placed in a variable, tTag, local to int_f oo. The polymorphic code

id would then be bound to int_f oo, causing tTag to be visible to foo, or, more

specifically, to elements within the body of foo. Procedure foo is then called with the

integer value 3.

Within the body of id, the integer must be converted to uniform representation.

The first statement in foo is an invocation of the generic system instruction

convertToPoly(tTag) (3), the result of which is the integer 1 represented in

uniform form; assume it is bound to identifier x. The polymorphic procedure is then free

to manipulate x in a uniform manner. Prior to exiting the body of foo, the return value

must be converted back to concrete representation by invoking the generic instruction

convertFromPoly (tTag) (x). The result ofthat call is returned.

If foo is subsequently called with a value of a different type, a new envelope

procedure with a different type tag is created and the polymorphic code for foo is

dynamically re-bound to this new procedure. Thus, from the standpoint of the

polymorphic procedure foo, the only difference between the call id [real] (3.0)

40

and the call id [int] (3) is the value of tTag in its current closure. The code for id

remains the same; in fact, the exact same machine code is executed in each case. The

only difference lies in which type-specific versions of convertToPoly (tTag) and

convertFromPoly (tTag) are invoked at entry and exit.

E. IMPLEMENTATION OF DATA STRUCTURES

As mentioned previously, all data structures are stored in non-polymorphic form;

when the fields of a data structure are accessed by a polymorphic procedure, they are

converted for use within the procedure and are reconverted when returned to the data

structure. This scheme is necessary to allow monomorphic procedures to access the

structures normally.

There are two cases where a polymorphic procedure may manipulate a value of a

quantifier type that is part of a data structure: (1) when the data structure is passed as a

parameter and (2) when the data structure is created within the procedure and returned as

its value.

1. Data Structure Passed as Parameter

Figure 22 shows an example of passing a structure with quantified fields to a

polymorphic procedure. The procedure f indSi ze is defined as a procedure, quantified

on types s and t, which takes as a parameter a structure, A, with two fields: age, of type

s and size, of type t. The procedure returns a value of type t, that value being the

value in the size field of the structure.

let findSize = proc[s, t](A:structure(age:s; size:t) -> t)
A(size)

Figure 22. Passing Structures with Quantified Fields. From [MDCB91].

41

Clearly, since the size of the concrete representations of the types s and t are

unknown and potentially variable, it would be impossible to compile finds ize using a

constant offset for the field size. That information would have to be calculated at run-

time and passed to the polymorphic procedure.

As in the case of passing type information to a polymorphic procedure, there are

two solutions. The first solution, passing offset information as additional parameters, was

excluded from consideration in favor of simply extending the tagging method described

previously for atomic types. In addition to a type tag for each quantified formal

parameter, a field offset value for each field in each quantified formal parameter taking a

compound data type is passed to an envelope procedure. These values are then available

to the embedded polymorphic procedure in its closure. Figure 23 shows the compilation

of the f indSize procedure.

let findSize = proc(sTag, tTag, ageOffset, sizeOffset:int
-> proc(A:structure(age:a, size:ß) -> ß))

proc(A:structure(age:a, size:ß) -> ß)
A(sizeOffset)

Figure 23. Compilation of Figure 22. From [MDCB91].

Some clarification of the syntax is required. The procedure findSize is

compiled as a monomorphic procedure which takes as parameters four integers; the first

two are the usual type tags representing the concrete types of the fields, the second two

are the offsets of those fields. The polymorphic code representing the original findSize

procedure is bound to this envelope procedure. It takes as parameters a value for age

and a value for s i ze, both of quantified type, with the type tags and offsets for those

fields contained in its closure. Upon call, that polymorphic procedure uses the

42

information in its closure to convert it's actual parameters to and from uniform form and

to index into the structure.

2. Data Structure Created Within Polymorphic Procedure

A second addressing problem occurs when a data structure is created within a

polymorphic procedure. The structure must be created in concrete form for non-

polymorphic use, however neither the offsets for the fields nor the overall size of the

structure are known at compile-time; they depend on the particular specialization of the

call.

Once again, offset information might either be passed to the polymorphic function

in the form of additional parameters or it may be left in the closure of the embedded

polymorphic function in the form of local declarations within it's envelope procedure. If,

however, the structure is totally encapsulated by the polymorphic procedure, no offset

information would be available at the time of call.

The Napier88 solution is to generate code within the envelope procedure to

calculate this information and to leave it in the closure of the polymorphic procedure in

the form of local declarations. This code uses another built-in system procedure, the

monomorphic procedure type Si ze, to do this work. Figure 24 shows a polymorphic

procedure, mkPair, and its compilation using this scheme.

Again, the Napier88 syntax is in need of clarification. The procedure mkPair is

defined as a polymorphic procedure, quantified on types s and t, which takes as

parameters first, of type s, and second, of type t. It returns a structure with fields

f st and snd of types s and t respectively. The structure is the result of assigning

first to f st and second to snd.

As compiled, mkPair is defined as a monomorphic function with two integer

parameters as type tags. The polymorphic code representing the original mkPair is

bound to this envelope procedure as usual.

43

let mkPair = proc[s, t](first:s; second:t
-> structure(fst: s, snd: t))

struct(fst=first, snd=second)

let mkPair = proc(sTag, tTagiint
-> proc(ct, ß -> structure (fst: a; snd: ß)))

begin
let fstOffset = 0
let sndOffset = fstOffset + typeSize(sTag)
let structSize = sndOffset + typeSize(tTag)

proc(first: a; second: ß -> structure(fst: a; snd: ß))
struct(fstOffset=first, sndOffset=second)

end

Figure 24. Compilation of Polymorphic Procedure mkPair. [FromMDCB91].

In the body of the envelope procedure (following the begin statement), the

offsets and overall size for the structure are calculated using the built-in type Si ze

procedure and the type. Finally, the polymorphic procedure is called and uses the offsets

contained in its closure to assign the concrete values, first and second, to the

appropriate addresses within the structure.

F. EFFICIENCY AND OPTIMIZATION

The main advantage to the Napier88 technique is that only values of quantifier

type are tagged. There is no overhead for monomorphic procedures and there is no

overhead for monomorphic portions of polymorphic procedures.

There are two sources of run time overhead. The first is in the fact that two

procedure calls are made for every call to a polymorphic procedure: one to the envelope

procedure and one to the polymorphic code. The second is in the calls to the built-in

procedures which convert between forms and calculate type size information.

[MDCB91] mentions several possible optimizations which are discussed here

briefly.

44

1. Specialization Through Partial Application

If polymorphic procedures are specialized once then called many times, the cost

of creating envelope procedures can be amortized over many calls. For example, if the

polymorphic identity function is to be called repeatedly with values of type integer, it

would be wise to specialize it once (e.g., let int_id = id [int]) and then call

int_id. This is equivalent to the textual polymorphic approach, except specialization is

performed at run time vice compile time.

2. Generate Inline Code

It might be possible, from static inspection of the code within a compilation unit,

to generate inline code instead of making polymorphic procedure calls. There is no need,

for example, to make the call let x = id [int] (123).

3. Use Textual Polymorphism

In the case where very few specializations are required, it may be more efficient to

generate pure monomorphic code for each type of interest than to suffer the overhead

associated with polymorphism. This approach will not be efficient if the number of

specializations and/or the number of quantified parameters is large. It will not work at all

in the case of first-class polymorphic functions.

4. Static Analysis

It may be possible to elide unnecessary conversions. For example, if a

polymorphic function is declared within another polymorphic function and can never

escape the scope ofthat function, it can be compiled to accept parameters passed in

uniform form. This would elide four unnecessary conversions to/from concrete form.

45

46

IV. IMPLEMENTATION OF POLYMORPHISM IN ML

A second strategy for the implementation of polymorphism is that used in

implementing ML [Le92]. Historically, most implementations of ML have used a

uniform data representation, specifically single-word pointers, for all data objects in order

to support polymorphic functions. A primary result of [Le92] was to allow for a mixed

data representation in ML, thereby improving efficiency. This work has been extended in

[ShA95] and [Th95].

The implementation strategy in this chapter is similar in many respects to that of

Napier88. On a surface level, it is just a variation on the same theme. Values are stored

in concrete form, making monomorphic functions much more efficient in the presence of

optimal data representations. Values passed to polymorphic functions via quantified

formal parameters must share a common representation; concrete actual parameters must

therefore be converted to uniform form.

However, ML differs from Napier88 in several important ways, one of which is

critical to the implementation of polymorphism. While Napier88 supports type

specialization at run-time, ML does not. This seemingly minor difference allows an ML

program to be fully type checked statically which allows much greater freedom in the

choice of implementation strategies. Polymorphic C also has these properties.

This chapter is structured very much like the previous chapter. After introducing

a few terms, we review the possible points at which conversions to and from uniform

representation might be required. We then discuss implementation details for atomic data

and compound data structures. The chapter concludes with a discussion of efficiency and

optimization issues.

47

A. BOXED AND UNBOXED VALUES

The proposed implementation technique uses some form of uniform

representation of data for use by polymorphic functions. In the discussion of Napier88,

we used the terms concrete and uniform form. While those terms are generic and are still

applicable, the literature regarding polymorphism in ML introduces some other related

terms.

The bit-pattern representing a value on which machine instructions operate is

called an unboxed value; 32-bit integers, 64-bit long integers, single- and double-

precision floating point numbers, etc., are all examples of unboxed values. A pointer to a

heap-allocated box containing an unboxed value is called a boxed value. [PJ91].

Conversions to and from concrete form are performed by a pair of generic

operators called wrap (r) and unwrap (r), where T is some concrete type. Wrap (x)

performs the conversion from the concrete representation of type T to the uniform

representation and is usually implemented by boxing the object. The result of this

operation is a data object which is said to be in the wrapped state or, simply, wrapped.

Unwr ap (T) performs the conversion from uniform representation to the concrete

representation of type T, by performing the converse of the wrapping operation on that

type; the result is an unwrapped object.

At times when context is not important, the terms uniform, boxed and wrapped,

and the terms concrete, unboxed, and unwrapped, are roughly synonymous. There are

subtle differences, though. In the implementation of ML, wrapping is most often

performed by boxing to obtain a uniform representation; unwrapping is generally

performed by unboxing to obtain a concrete representation.

For clarity in the examples given in following sections, when there is only one

concrete type involved we will drop the type quantifier and use the simpler terms wrap

and unwrap vice wrap(x) and unwrap(x).

48

1

B. POINTS OF CONVERSION

In the discussion regarding Napier88 we showed that for a language which allows

both first-class functions and type specialization without call it is impossible to know

statically whether or not a procedure being called is polymorphic. Because of this, values

being passed via quantified formal parameters could not be converted to uniform

representation before the call.

However, ML does not allow partial application of types. All variables are

statically bound and their type is known at compile-time. By way of explanation,

consider the ML code of Figure 25 (an expansion of the Napier88 code shown earlier in

Figure 15.

fun first(x,y) = x;
fun second(x,y:int) = y;
let condition = true;
val either = if condition then first else second;
val two = either (2, 3);
let condition = false;
val three = either(2, 3);

Figure 25. Effect of Static Binding in ML.

The polymorphic function first is defined as one which takes two quantified

parameters, x and y, and returns x; it is assigned the type a * ß -> a. Then the

monomorphic function second is defined as one which takes two integers, x and y, and

returns y; it is assigned type int * int -> int.

Identifier either is bound to either the function first or the function

second, depending on the truth value of condition. In this example, condition

has been assigned the truth value true, so either is statically bound to first. As a

result, on the call val two = either (2, 3) the value 2 is returned.

49

This binding for either is static, depending only on the environment at time of

definition. If condition is given a new binding as shown in Figure 29 and either is

called a second time, the return value will not change; the function either is still

bound to first.

Because of static binding, the type inferencing engine is always able to determine

the type of a function at compile time. The function may be monomorphic or

polymorphic but, unlike in dynamically-bound languages such as Napier88, there is no

ambiguity and, especially, there is no ambiguity at run time. As a result, the requirement

to convert values from concrete to uniform form before, vice after, the call to a

polymorphic, higher-order function does not apply. We are free to adopt either

conversion convention.

In fact, [Le92] has adopted the convention that conversions should occur before

the call to a polymorphic function. In light of this difference, it is useful to once again

consider the high-level issues surrounding the various points of conversion. Recall that

there are four cases of interest when passing parameters to a polymorphic procedure.

These are shown in Table 3 and discussed in the following sections.

Concrete actual parameter passed to concrete formal parameter.

Concrete actual parameter passed to quantified formal parameter.

Quantified actual parameter passed to concrete formal parameter.

4 Quantified actual parameter passed to quantified formal parameter.

Table 3. Passing Parameters to Polymorphic Functions.

1. Concrete Actual Parameter Passed to Concrete Formal Parameter

As before, this case is trivial since there is no polymorphism involved. The

compiler is free to generate monomorphic code.

50

2. Concrete Actual Parameter Passed to Quantified Formal Parameter

In this case, every concrete actual parameter being passed to a function via a

quantified formal parameter must be converted to uniform representation prior to the call

and the result, if of quantified type, must be converted back to concrete form after the

return.

3. Quantified Actual Parameter Passed to Concrete Formal Parameter

If a polymorphic procedure receives a value in uniform form and subsequently

passes that value to another procedure via a concrete formal parameter, the value must be

reconverted to its concrete form before the call. In the absence of some sort of trick (e.g.,

tagging), it is not possible for the conversion to occur before the call; doing so would

subvert the polymorphic nature of the calling function. Figure 26 shows an example with

unnecessary details omitted.

fun polySort(aList, aComparisonFunction) = ...

fun intCompare(x,y: int) =
val intList = [3,2,4,1];

val aSortedlntList = polySort(intList, intCompare);

Figure 26. Passing Quantified Actual Parameter to Concrete Formal Parameter.

First, a polymorphic sort routine, polySort, is declared; it takes as parameters

a list of quantified type and a comparison function operating on elements of the list.

Then, a monomorphic integer comparison function, intCompare, and an integer list,

intList, are declared and passed as parameters to polySort. Because polySort is

polymorphic and it's parameters quantified, intList is converted to uniform

representation prior to the call.

51

The function polySort will, in the course of its work, determine whether to

swap two list elements by applying the comparison function to two of those elements.

The comparison function is monomorphic and, so, expects to receive it's parameters in

concrete form. But polySort received them in uniform form. An explicit conversion

in the body of polySort, in this case to type integer, would effectively cause

polySort to become monomorphic.

There are two common solutions. The first is to incorporate a tagging

mechanism, whether that tag is actually embedded in the data type or passed as an

additional parameter to the polymorphic procedure. In this case, polySort could

inspect the tag, invoke the appropriate conversion utility and pass the parameter.

A second solution, and the one chosen in [Le92], is to build a monomorphic

envelope procedure that performs the correct conversions and then invokes the called

monomorphic function. The polymorphic calling function is free, then, to call the

envelope procedure, passing values in uniform form, and to rely on the envelope

procedure to perform the proper conversions. Numerous examples are given in following

sections.

4. Quantified Actual Parameter Passed to Quantified Formal Parameter

If a polymorphic procedure receives a value in uniform form and subsequently

passes that value to a polymorphic procedure via a quantified formal parameter, no

conversion is required. The called procedure expects a value in uniform form and will

receive it as such. Likewise, no conversion is required on return from the called

procedure.

C. IMPLEMENTATION OF ATOMIC TYPES

In the approach introduced in [Le92], the implementation of polymorphism for

atomic types is straightforward. Between calls, atomic objects are stored in concrete

form. Monomorphic functions are compiled using optimal, system-dependent data

representations. Polymorphic functions are compiled using uniform data representations.

52

Conversions between forms are required in only three instances: before passing a

concrete value to a polymorphic function via a quantified formal parameter, after return

from a polymorphic procedure if the return value is of quantified type, and when passing

a quantified value to a function via a concrete formal parameter. These cases are

addressed in turn in the following sub-sections.

The program transformations used to realize these conversions are extremely

elegant and powerful. Some final results are given below. A more comprehensive

treatment of the transformation, along with the derivations of the examples in this

chapter, is provided in the Appendix.

1. Applying Polymorphic Functions to Concrete Values.

As stated in the previous section, when passing a concrete value to a polymorphic

procedure via a quantified formal parameter, conversions to and from concrete form

occur prior to the call and the results, if of quantified type, are reconverted following

return. Figure 27 demonstrates this technique.

fun id(x) = x;

val one = id(l);

(a) val one = (unwrap(id(wrap(1)));

Figure 27. Applying a Polymorphic Function to a Concrete Value.

In Figure 27, a polymorphic identity function, id, is defined. The subsequent

application of id to the concrete parameter, 1, of type int, is transformed to the code

shown on line (a). Here, the integer 1 is wrapped, id is applied to the wrapped integer,

and the result of evaluating the expression is unwrapped and bound to identifier one.

53

A slightly more interesting example is shown in Figure 28. Here, the

polymorphic function first is defined as one which returns the value found by

applying the polymorphic identity function, id, to the first of it's parameters.

fun id(x) = x;

fun first(x,y) = id(x);

val a = first(1, 2.0) ;

(a) val a = unwrap(int) (first(wrap(int) (1),wrap(real) (2.0)) ;

Figure 28. Second Example of Polymorphic Function Application in ML.

The application of first to the values 1 and 2 . 0, the first of type int and the

second of type real, would be compiled as shown on line (a). The two arguments are

wrapped using the appropriate instantiation of the wrap operator and the function

first is applied to these wrapped values. Function first, in its body, is free to pass

the wrapped integer to id which, being polymorphic, expects wrapped values itself.

Since the result of first is of quantified type, it is unwrapped after the return and

bound to identifier a.

2. Passing a Wrapped Value via a Concrete Formal Parameter.

The remaining instance where conversion between forms is required is when a

wrapped object is passed via a concrete formal parameter. As stated earlier, in this case

an envelope function is created to perform the proper conversion and apply the

monomorphic function to the converted values. The examples of Figures 29 and 30 help

clarify the method.

54

fun succ(x:int) = x + 1;

fun apply(f,x) = f(x);

val two = apply(succ, 1);

Figure 29. Passing Quantified Actual Parameter via Concrete Formal Parameter.

The problem is set up in Figure 29. Two functions are defined. The first, succ,

is the monomorphic integer successor function of type int -> int; it takes an

unwrapped integer as its only parameter. The second function, apply, is a polymorphic,

higher-order function of type (a -> ß) * a -> ß that applies it's first parameter, a

function of type a -> ß, to its second parameter, a value of type a, resulting in a value of

type ß. The function apply is then applied to succ and the integer 1, and the result is

bound to identifier two.

Since apply's second formal parameter, x, is quantified, the second actual

parameter (the integer 1) must be wrapped prior to the call. But this causes difficulties.

The function succ is monomorphic and takes an unwrapped integer as its parameter; it

will not work correctly if it is passed a wrapped integer. For example, if wrapping is

performed by boxing the integer, the result is a pointer. The result of applying succ to a

pointer would be to increment the pointer, causing it to point to whatever was in the next

higher word in storage, vice incrementing the integer to which the pointer pointed.

There are several ways to solve this problem (e.g., tagging, passing extra

parameters). The method chosen in [Le92] is the use of a program translation to generate

an envelope function around the monomorphic function. For the example of Figure 29,

the envelope function for succ would be as shown in Figure 30(a), with the application

of apply translated as shown in Figure 30(b).

55

(a) Xx.wrap(succ(unwrap(x)))

(b) val two =
unwrap(apply{Xx.wrap(succ(unwrap(x)))), wrap(1));

Figure 30. Result of Translating Figure 29.

The envelope function of Figure 30(a) is simply a function abstraction which

takes a parameter x, unwraps it, applies the monomorphic function succ to the

unwrapped value, and then wraps the return value.

Figure 30(b) demonstrates the overall translation caused by the application of

Figure 29. The envelope function is generated as a local function abstraction and the

second actual parameter, the integer 1, is wrapped. The function apply is then applied

to these two objects. In the body of apply, the envelope function is applied to the

wrapped integer. In the body of the envelope function, the integer is unwrapped and the

function succ is applied to the unwrapped integer. In the body of succ, the integer is

incremented and the result is returned to the envelope function. The envelope function

wraps the integer and returns the wrapped integer to the function apply. The function

apply returns the wrapped integer to the original calling routine where it is unwrapped a

final time and bound to the identifier two.

It is useful, in the context of wrapping and unwrapping of actual parameters to

view Xx. wrap (succ (unwrap (x))) as the "wrapped" version of succ. If the

wrapped version is given a name, succ', the translation given in Figure 30 could be

expressed more succinctly, as shown in Figure 31.

(a) succ' = Xx.wrap(succ(unwrap(x)))

(b) val two = unwrap(apply(succ', wrap(l));

Figure 31. Different View of Figure 30.

56

D. IMPLEMENTATION OF DATA STRUCTURES

So far, we have considered only the implementation of atomic data types. The

extension of this scheme to composite data types is straight forward. The following

discussion is divided into two parts covering, first, simple composite types (e.g., tuples

and records) and, second, the more complex case of recursive data types (e.g., lists).

1. Simple Composite Data Types

Simple composite data types include tuples and records. They are of a fixed,

known size and are not recursive. Because of this, their implementation is a simple and

direct extension to the implementation already discussed for atomic types.

Passing a record, for example, to a polymorphic function is simply a matter of

wrapping each field in the record prior to the call and unwrapping everything after the

call. In the case where one of these simple structures is created by the polymorphic

function vice being passed to it, the scheme is even simpler: the polymorphic function

creates the structure in wrapped form and it is unwrapped upon return. Figure 32 gives

an example of this latter case.

In this example, the polymorphic function mkPair is defined as one which takes

a parameter of quantified type and returns a pair. The call mkPair (3.14), for

example, would result in the creation of the pair (3.14, 3.14). Figure 32(a) shows

the translation of the call. This translation could be rewritten as shown in Figure 32(b), a

notation which might be more comfortable to an imperative language programmer.

Prior to calling mkPair, the actual parameter is wrapped. On return, the first and

second elements of the tuple are extracted, using the built-in f st and snd operators, and

are unwrapped prior to being bound to the identifier realPair.

The clear implication so far is that these simple structures are stored in concrete

form. This is often the case but, if the size of the structure is large, wrapping and

unwrapping each field can be expensive. In some cases, it might be better to store these

57

fun mkPair(x) = (x, x);

val realPair = makePair(3.14);

(a) val realPair = let x = mkPair(wrap(3.14))
in (unwrap(fst(x)), unwrap(snd(x)));

(b) val realPair = (unwrap(fst(mkPair(wrap(3.14))),
unwrap(snd(mkPair(wrap(3.14))));

Figure 32. Creation of Data Structure in Polymorphic Function. From [Le92].

structures in a wrapped representation at all times. Figure 33 shows three possibilities,

using boxed values as the uniform (wrapped) representation.

Figure 33(a) shows the standard boxed representation used by most current ML

implementations. Every field of every record is boxed before being assigned to the

record. Here, the record x is represented as a pointer to a set of four boxed values, two of

which are reals and two of which are strings. Likewise, record y is a record represented

as a pointer to three boxed values, all reals. Access to any of these fields requires

unboxing, an inefficient exercise for such routine computations as arithmetic.

A more efficient data representation is seen in Figure 33(b). Here, the real

numbers are stored in their unboxed form, while the strings remain boxed, as is typical of

most languages. Mixing data types in the manner of record x, however, complicates the

object descriptor used by the garbage collector.

A better solution is to re-order the fields of the record so that all unboxed fields

are ahead of all boxed fields. The object descriptor then consists of two short integers:

one indicating the length of the unboxed part, the other the length of the boxed part.

[ShA95]. Figure 33(c) gives an example of this representation.

58

val x = (4.51, "hello", 3.14, "world");
val y = (4.51, 3.14, 2.87);

X

1 1 1
'

1
4.51

'
3.14

''
|"hello" "world"

(a) Standard Boxed Representation

4.51 3.14

'hello' 'world"

(b) Flat Unboxed Representation

4.51 3.14

"hello' 'world"

V —►

" I
14.511 2.87
1 1 w

3. 14

4.51 3.14 2.87

4.51 3.14 2.87

(c) Flat Representation with Reordering Fields

Figure 33. Data Representations for Records. From [ShA95].

This third method is used by both [Le92] and [ShA95], making access to record

fields very efficient for monomorphic code. Of course, any unboxed fields will have to

be boxed prior to being passed to polymorphic code via quantified formal parameters.

59

2. Recursive Data Types

Recursive data types are those whose values are composed from values of the

same type [Wa90]. One common example suitable for this discussion is the list type in

ML, defined as follows:

datatype a list = nil | cons of a * a list;

In other words, a list is either an empty list or it is a value of type a followed by a list of

type a list. Any list, then, is built up recursively from the empty list, nil; the list

[1,2,3] could be written as cons (l,cons (2, cons (3, nil))).

Like all recursive data types, lists are usually represented using pointers. Each

element in an a list consists of a record with two fields. The first field is a value of type

a; the second field is a pointer to the head of the rest of the list. Thus, the list Ll =

[1,2,3] could be represented as shown in Figure 34(a).

Polymorphic functions operating on lists, however, are compiled to be

independent of the type of the list elements; the polymorphic list reversal function of

Figure 4, for example, manipulates individual list elements independent of their type.

Subsequently, those elements must be boxed. The standard boxed representation for the

list [1,2,3] is shown in Figure 34(b).

But list elements are not always atomic objects. Figure 34(c) shows a flat,

unboxed representation of a list composed of three pairs where each element of the list

is a pointer to a pair and each pair is represented in the unboxed form discussed in the

previous section. This representation is acceptable for functions such as reverse, of

type a list -> a list, but consider the polymorphic function unzip [ShA95], of

type (a*ß) list -> a list * ß list shown in Figure 35. It operates on lists

of type (a * ß) list, returning a pair of lists, the first of type a list, the second of type

ß list. The application of un z ip to the list [(1,4), (2,5), (3,6)] results in the

pair ([1,2,3], [4,5,6]).

60

LI = [1,2,3];
L2 = [(1,4), (2,5), (3,6)];

LI

(a) Flat Unboxed Representation of LI

LI,

(b) Standard Boxed Representation of LI

L2

(c) Flat Unboxed Representation of L2

L2

(d) Standard Boxed Representation of L2

nil

1 1 I
 »- nil

1 ^L ,_L
1 2 3

1
 ► —

1
 ►

1
 ^> nil

1 4 1 2 3 1

nil

' ' ' ' i '

Figure 34. Data Representations for Recursive Types. From [ShA95].

The flat representation of Figure 34(c) is not suitable for function unzip, as

unzip manipulates the individual fields of the pairs comprising the elements of the list.

For unzip to work, those fields must be boxed, leading to the standard boxed

representation of Figure 34(d). On the same theme, one could imagine having lists of

lists of pairs of lists, etc., and could construct polymorphic functions, such as an

imaginary super_unzip, that require the entire construct to be boxed. Obviously, if

61

lists were stored in a flat representation, the boxing and unboxing required for such

polymorphic function calls could be very expensive.

fun unzip 1 =
let fun h((a , b) : :r, u,w) ■ = h(r, a : :u, b : :i rf)

1 h([] ,u,w) = (reverse u, reverse w)
in h(l, [], [])

end

Figure 35. Unzip Function in ML. From [ShA95].

For this reason, it is appropriate to store and maintain recursive structures in

standard boxed form at all times. Doing so complicates access to, and manipulation of,

these structures but it is relatively inexpensive. In the case of lists, for example,

appending a new element to the head of a list is simple. The new element is boxed and

inserted at the front of the linked list of elements.

Thiemann proposes a revised translation scheme utilizing continuation-passing

style and a notion called representation types [Th95]. A result of his work is that many

recursive data structures can have more efficient storage representations. These

techniques might be applicable to extensions of Polymorphic C.

E. EFFICIENCY AND OPTIMIZATION

The most significant result of the work reported in [Le92] is the successful

introduction of mixed data representations to ML via simple program translations and the

introduction of wrap and unwrap operators. In experiments which compared the

performance of a compiler utilizing mixed representations and the coercion scheme

discussed above to that of an identical compiler using the traditional uniform

representation, the former was clearly superior in most instances.

The best results were achieved on programs that performed a great deal of integer

and floating point arithmetic, involved a significant amount of looping, and/or performed

62

a significant number of function calls. These results are due to the fact that much of the

code in any real program is monomorphic and, hence, benefitted from the ability to

directly access data in its optimal representation.

There was no significant difference for programs which performed a great deal of

list processing. This, too, makes sense in that the representation of lists is the same in

both cases.

The worst results came from programs which utilized a great deal of

polymorphism. The reasons for this are also clear. The coercions required for a

polymorphic function call can be quite expensive in some instances.

The results reported by [Le92] are obtained by applying the proposed

implementation scheme without additional optimizations. Of the many possible

optimizations, the following seem to be the most promising.

1. Compile-time Reductions

There are three important cases, all somewhat related, in which static analysis of a

program can result in the elimination of a number of unnecessary coercions.

a. Elimination of Trivial Coercions on Data

Any sequence of calls of the form wrap (unwrap (x)) or

unwrap (wrap (x)) are trivial and can be replaced with x. Consider the example of

Figure 36, for example.

The rules for passing unwrapped objects via quantified formal parameters

were clear: wrap the actual parameter before the call and, if necessary, unwrap the return

value after the return. A naive implementation might analyze the code of Figure 36(a)

and, based on that rule, mechanically generate the translation of Figure 36(b). It's clear,

however, that one unwrap operation and one wrap operation can be saved by eliminating

the trivial coercions prior to the second application of id. The resulting code is shown in

Figure 36(c).

63

(a) fun id(x) = x;

fun apply(f, x) = f(x);

val one = id(apply(id, 1));

(b) val one = unwrap(id(wrap(unwrap(apply(id, wrap(1))))));

(c) val one = unwrap(id(apply(id, wrap(l))));

Figure 36. Elimination of Trivial Coercions.

b. Use Inline Monomorphic Functions

When a monomorphic function is applied to wrapped values, an envelope

function must be inserted around the monomorphic function to unwrap its parameters,

call it, and wrap its return value. If the monomorphic code is sufficiently small, inlining

that function would save function call overhead.

c. Monomorphic Expansion

If polymorphic functions are consistently replaced by specialized functions

for each instance of application on a new type, the program becomes strictly

monomorphic. In this case, polymorphic functions would be used similarly to Ada

generic functions or C++ templates: they would merely serve as templates for the

creation of monomorphic code. The compiler would be free then to generate optimal data

representations for all types.

While we have noted that the growth of code could be enormous if many

diverse functions are applied to data of many types, there are some advantages to this

approach, especially using the implementation scheme discussed in this chapter. First,

the code growth in any particular instance may be manageable for a particular program.

If it is not, it is possible to monomorphically expand only a portion of the code - perhaps

a particular, high-performance set of functions - while leaving the rest unexpanded.

64

The ability to selectively perform this sort of time/space optimization is a

primary strength of this technique. Thiemann provides additional thoughts on this matter

[Th95].

2. "Don't Care" Polymorphism

Thiemann notes an extremely simple optimization which he terms "Don't

Care" polymorphism [Th95]. It can be fully explained by an extremely simple example.

Given a function first (x, y) = x, of type (a*ß)-> a, it does not matter if y is

wrapped or unwrapped; it is ignored. Since the function does not need to access y, it

need not be coerced under any circumstance.

3. Proper Use of Tail Recursion

Thiemann notes an optimization somewhat related to the case of eliminating

trivial coercions [Th95]. Consider, once again, the function apply and the application

apply (succ, 1). Using inline notation, this application is translated to:

unwrap(apply(Xx.wrap(succ(unwrap (x)))), wrap(1));

After the application of succ to the unwrapped integer, the return value is wrapped by

the envelope function and returned to apply where it is immediately returned to the

calling routine and unwrapped.

Under these circumstances, there is no need for the envelope function to wrap the

object prior to the return; the polymorphic function apply does nothing with it after the

return except return it to the monomorphic routine which, in the end, wants it in

unwrapped form. The techniques in [Th95] eliminate this inefficiency.

65

66

V. IMPLEMENTATION RECOMMENDATIONS FOR
POLYMORPHIC C

This chapter discusses the implementation of polymorphism in Polymorphic C.

Section A reviews the primary issues raised in the case studies of Chapters III and IV.

Section B presents a recommendation for Polymorphic C. Section C demonstrates how

one might achieve the effect of parametric polymorphism in an imperative language by

repeating the examples of Chapter IV using C. Section D concludes the chapter with

examples of potential translations, a la [Le92], from Polymorphic C to a target language

(Polymorphic C augmented with the wrap and unwrap constructs).

A. REVIEW OF IMPLEMENTATION TECHNIQUES

This section briefly reviews some of the implementation decisions covered in

previous chapters with the goal of narrowing the scope of choices for Polymorphic C.

In the implementation of parametric polymorphism, polymorphic functions must

be compiled to operate on data that is represented in some uniform form. This

requirement can be accommodated by representing all data in a system in a uniform form,

as is done in ML, but doing so significantly reduces the efficiency of monomorphic code.

This has a significant overall impact on a program since monomorphic code usually

comprises 80 - 90 % of the total in a typical program.

A better approach is to store and manipulate values in their optimal concrete

representations and convert them to a uniform form only when required in order to

accommodate polymorphic functions. Regardless of how it is accomplished, this

conversion can only occur at one of two points: before the call to a polymorphic function

or after the call to a polymorphic function. Napier88 takes the latter approach, [Le92]

the former.

67

1. Conversion After the Call.

This choice is forced because Napier88 supports both type specialization without

call and first-class functions. Hence, the compiler is not able to determine statically

whether a function being called will be polymorphic or monomorphic at run time. The

only efficient alternative is to leave data in concrete form and allow the function, if it is

polymorphic, to itself convert the data to uniform form and reconvert it to concrete form

prior to return.

However, this conversion scheme demands that the polymorphic function be

supplied with the type information it will need in order to perform the appropriate

conversions. If the data is of some compound type, it must also be supplied with

information regarding the structure of the data. There are three ways to accomplish this.

The first is to simply pass this information as separate parameters to the polymorphic

function. The second is to tag data with type information.

The third, used in Napier88, is to create an envelope function and store the type

and structure information in variables local to that function. The polymorphic code is

then dynamically bound to the envelope function, making those local variables visible to

the polymorphic function which can exploit that information to perform the correct

conversions. On subsequent specializations, the polymorphic function is bound to

different envelope procedures with different values in the local variables, resulting in

different conversions.

2. Conversion Before the Call

The approach used in Napier88 is not applicable to ML. First, functions in ML

are statically bound at time of definition so we are not able to dynamically re-bind

polymorphic functions to different envelope functions. Therefore, to convert after the

call we must either pass type and structure information via separate parameters or use

tagged data.

Secondly, ML does not support type specialization. This means that the compiler

is able to statically type the entire program. Hence, the requirement to delay conversion

68

until after the call to a polymorphic function does not exist; we are free to convert values

prior to the call. This is the approach adopted in [Le92]. In this case, the data is

converted from within an environment where type and structure information is known;

there is no requirement to somehow propagate this information to the polymorphic

function.

The only difficulty with this conversion scheme occurs when a polymorphic

function must apply a monomorphic function to its data (e.g., a polymorphic sort routine).

The monomorphic function expects to receive its data in concrete form but the

polymorphic function does not know how to perform the proper conversions. This

problem is solved in Leroy's method by creating an envelope function which performs

the conversions then applies the monomorphic function to the converted values.

B. APPLICABILITY TO POLYMORPHIC C

Polymorphic C is a strongly and statically typed language. As such, it shares the

same implementation constraints as ML. Because Polymorphic C is statically typed, the

implementation technique used in Napier88, which relied on dynamic binding, is not

applicable to Polymorphic C.

We are free to convert either prior to or after the call to a polymorphic function,

with the only concern being that of implementation efficiency. There are several clear

alternatives which are outlined in Figure 37.

The most efficient of the alternatives is to convert values to uniform form prior to

the call to a polymorphic function. This will lead to the overhead associated with

envelope procedures, but only in the case where monomorphic code is applied to data

represented in uniform form. In all other cases, the overhead imposed by this scheme is

limited to that required to perform the conversions. This method is that given in [Le92].

69

1. Conversion After the Call
a. Pass Type and Structure Information via Additional Parameters

Imposes additional function call overhead for every polymorphic function
in the system.

b. Use Tagged Data
Imposes additional complexity and overhead for the entire system, whether
polymorphic or not.

2. Conversion Before the Call
a. Create Envelope Functions For Monomorphic Functions

Imposes additional function call overhead only when monomorphic functions are
applied to uniform values.

Figure 37. Implementation Alternatives for Polymorphic C.

C. SIMULATING PARAMETRIC POLYMORPHISM IN C

Leroy's translation works by automatically inserting appropriate coercions

whenever polymorphic functions are specialized. Since C does not support type

abstraction (i.e., all types are concrete), one cannot actually apply Leroy's translation to C

source code. However, it is possible to achieve the same effect by manually introducing

coercions that correspond to those introduced when the translations are applied to

equivalent functions in ML.

One first needs to define the uniform representation to be used in C. Since

pointers are typed in C, the boxing of a value results in a pointer to a specific type.

Hence, we must not only box the objects but also coerce the results to or from a specific

pointer type. The choice of type is unimportant as long as it uniform and consistent.

We have arbitrarily chosen the pointer to void (void*) as the uniform data

representation. Wrapping is performed by referencing an object and casting the result as

a pointer to void. Unwrapping is performed by casting a pointer to void to a pointer of

the appropriate type and dereferencing the result. An unwrapped integer value x, is

wrapped by the operations (void*)&x. A wrapped integer value y, is unwrapped by

70

the operations * (int*) y. These operations may be encapsulated; the wrap and

unwrap functions for types int and float are shown in Figure 38.

void* wrap_int(int &c)(return (void*)&c;}

void* wrap_float(float &c){return (void*)&c;}

int unwrap_int(void *u){return *(int*)u;}

float unwrap float(void *u){return *(float*)u;}

Figure 38. Wrap and Unwrap Functions in C.

The discussion continues in two parts. We review some examples of how

parametric polymorphism might be achieved in C and conclude with a discussion of how

this might be improved.

1. Examples

We repeat here the examples of Chapter IV. The equivalent ML code from

previous examples is included as comments immediately preceding the corresponding C

code. The wrap and unwrap functions shown in Figure 38 are contained in the file

"wrpunwrp.h".

a. Polymorphic Identity Function

The polymorphic identity function of Figure 27 is coded in C as shown in

Figure 39. As can be seen, there is a clear mapping between the ML and C code.

b. Polymorphic Function "first"

The polymorphic function first of Figure 28 is coded in C as shown in

Figure 40. While still quite simplistic, the call id (x) within first does serve to

demonstrate the passing of a quantified actual parameter via a quantified formal

parameter.

71

#include "wrpunwrp.h"

// fun id(x) = x;
void* id(void *x){return x;}

void main()
{
// val one = unwrap (int) (id (wrap (int) (1)))) ;
int one = unwrap_int(id(wrap_int(1)));
}

Figure 39. Polymorphic Identity Function.

#include "wrpunwrp.h"

// fun id(x) = x;
void* id(void *x){return x;}

// fun first (x, y) = id(x) ;
void* first(void *x, void *y){return id(x);}

void main()
{

// val a = unwrap (int) (first (wrap (int) (1) ,wrap (float) (2.0))) ;
int a = unwrap_int(first(wrap_int(1), wrap_float(2.0))) ;

}

Figure 40. Polymorphic Function "first" in C.

c. Polymorphic Higher-Order Function "Apply"

The higher-order function apply of Figures 29-31 is coded in C as shown

in Figure 41. Note that the use of a function pointer, *PF, is required in the call to

apply because C does not allow higher-order functions.

Also note the function succ_prime which represents the wrapped

version of sue c. The use of this function is required because C does not allow nested

72

function declarations. In other words, there is no C equivalent of the ML expression

apply (A,x. wrap (int) (succ (...)), . . .) of Figure 30. Rather, we must

mirror the construct of Figure 31, where the anonymous lambda abstraction was given a

name, succ', and called explicitly as follows: apply (succ' , . . .).

#include "wrpunwrp.h"

// fun succ(x) = x + 1;
int succ(int x){return x + 1;}

// succ' = Xx. wrap (int) (succ (unwrap (int) (x)))
void* succjprime (void* x)
{
return wrap_int(succ(unwrap(x)))

}

typedef void* (*PF)(void*);

// fun apply (f, x) = f(x);
void* apply(PF f, void *x){return f(x);}

void main()
{

// let two = unwrap_int (apply (succ' , wrap (int) (1)))
int two = unwrap_int (apply (succ_prime, wrap_int (1))) ;

>

Figure 41. Polymorphic Higher-Order Function "Apply" in C.

d. Polymorphic Function "mkPair"

The polymorphic function mkPair of Figure 32 is coded in C as shown in

Figure 42. We demonstrate two ways to implement the function application, both of

which are also shown in Figure 32.

Since C does not have predefined pairs, we start by declaring structures

that mimic the pairs of ML. The structure float Pair is the flat unboxed

73

representation for a pair of floats; poly Pair is the standard boxed representation for a

pair of anything.

In the actual code, there are only two notable differences. The first is the

use of a temporary variable, pp, in mkPair; in C, one cannot have a constructor as the

right-hand side of a return statement. The other is the use of a global variable, x, in the

first call to mkPair; in the ML code, the variable is local to the call. Both of these

differences are artifacts of C and are not inherently associated with imperative languages.

#include "wrpunwrp.h"

struct floatPair {float fst; float snd;};
struct polyPair {void *fst; void *snd;};

// fun mkPair (x) = (x,x) ;
polyPair mkPair(void *x)
{
polyPair pp = {x,x};
return pp;

}

void main()
{
// val real Pair =
// let x = mkPair(wrap (float) (3.14))
// in (unwrap (float) (fst (x)) , unwrap (float) ((snd (x))) ;
polyPair x = mkPair(wrap_float(3.14));
floatPair realPair = {unwrap_float(x.fst),

unwrap_float(x.snd)};

// val realPair =
(unwrap (float) (fst (mkPair (wrap (float) (3.14))) ,
//

unwrap(float) (snd(mkPair(wrap(float) (3.14)));
floatPair realPair2 =

{unwrap_f loat(mkPair(wrap_float(3.14)).fst),
unwrap_float(mkPair(wrap_float(3.14)).snd) };

}

Figure 42. Polymorphic Function "mkPair" in C.

74

2. Discussion

The previous examples demonstrate that explicit coercions can be used to achieve

parametric polymorphism in C. However, there are difficulties, not the least of which is

that the programmer must correctly manage the complexity associated with these explicit

coercions with little or no help from the compiler. For example, there is nothing in C's

type system to prevent the programmer from performing inadvertent casts such as

float f = unwrap_float(apply(succ_prime, wrap_int(x)));

A second difficulty is that the programmer must explicitly deal with the

polymorphic nature of a function to begin with. In the case of apply, for example,

he/she must insert the proper coercions when apply is called and must also explicitly

generate the envelope function succ_prime. Not only does this decrease programmer

productivity and introduce additional sources of error, it also implies some knowledge of

the body of apply and of the fact that succ_prime has not yet been coded by some

other programmer. These observations may seem trivial for this toy example but, in the

context of a large development effort, it is not clear that a programmer will have this

knowledge.

A better approach would be to design an imperative language and a set of

appropriate translations such that these coercions and envelope procedures could be

automatically generated if and when they are needed. The programmer would then be

relieved of the burden associated with simulating polymorphism.

If that language also supported type inferencing, entire programs could be written

without any explicit type information at all. Figure 43(a) shows how the C source code

of Figure 41 might be improved in an imaginary language which resembles C without

explicit type information. With no further assumptions, it would be possible for a

compiler to use the method proposed in [Le92] to translate the call to apply as shown in

Figure 43(b).

This hypothetical language corresponds to Polymorphic C.

75

(a) succ(x){return x + 1;}

apply(f, x){return f(x);}

void main(){two = apply(succ, 1);}

(b) succ_prime(x){wrap_int(succ(unwrap_int(x)));}
two = apply(succ prime, wrap(l));

Figure 43. Code Without Explicit Type Information.

D. LEROY'S METHOD APPLIED TO POLYMORPHIC C

One of the great strengths of the method under consideration is that the coercions

inserted into function calls are based exclusively on the types of the functions involved.

They are completely independent of the body of the function. For example, the call

f oo (x) for any function f oo of type a -> a, whether f oo is the simple identity

function or one of extreme complexity, is translated to a call of the form:

unwrap(x) (f oo (wrap (x)). Likewise, the call bar (f, x) for any function bar

of type (a -> ß) * a -> ß is translated to a call of the form:

unwrap (x) (bar (Xy .wrap (x) (f (unwrap (x) (y))) , wrap (x) (x)))

This makes the application to Polymorphic C relatively straightforward. If the

target language of the translations is Polymorphic C augmented with wrap and unwrap

operations, the results would be identical to those seen in ML and simulated in C.

Two simple examples will suffice. Figure 44(a) gives the Polymorphic C version

of the polymorphic identity function and an application ofthat function. The resulting

translation of the call is shown in Figure 44(b).

76

(a) let id
in
id(3)

= A.x.x

(b) unwrap(id(wrap(3))

Figure 44. Polymorphic Identity Function in Polymorphic C.

Figure 45(a) gives the Polymorphic C versions of the integer successor function,

succ, and the polymorphic, higher-order function apply, and an application of apply

to succ and the integer 1. The translation of the call is shown in Figure 45(b).

(a) let succ = Xx.x + 1
in
let apply = Xf,x.f(x)
in
apply(succ, 1)

(b) let succ' = A,y. wrap (succ (unwrap (y))
in
unwrap(apply(succ', wrap(l)))

Figure 45. Higher-Order Function "apply" in Polymorphic C.

77

78

VI. FURTHER RESEARCH

While the approach presented in [Le92] shows great promise for the

implementation of polymorphism in Polymorphic C, there is much work remaining

before such an implementation can be fully realized.

A. TRANSLATION RULES

The first step in such an effort must be to formulate a set of translation rules based

on the type system of Polymorphic C which can be used to insert the proper coercions

into the function calls. Since these coercions are generated based on the type, vice the

syntax or structure, of the functions, the translation should as in [Le92].

Polymorphic C does include two data types not seen in the core ML considered in

[Le92]. It includes pointers of type x.ptr, and arrays. The introduction of pointers should

not present great difficulty because they would not have to be coerced. The values

attained by dereferencing pointers might have to be coerced but this, too, should be

amenable to translation from the typing rules. Likewise, arrays can be handled easily if

maintained in standard boxed representation at all times.

B. DATA REPRESENTATIONS

A decision will have to be made concerning the proper data representation for the

various data types. At present, the only concrete atomic data types in Polymorphic C are

integers and pointers to integers. The only data structures are arrays. Any

implementation decisions made now regarding data representations should anticipate the

eventual introduction of additional atomic types such as reals and characters and of data

structures such as structures and lists. Thiemann presents some techniques which might

be applicable to future extensions to Polymorphic C [Th95].

79

C. TYPELESS RUN TIME SYSTEM

Given that Polymorphic C is strongly and statically typed, there can be no type

insecurities at run time for a properly compiled program. It may be possible to devise a

run time system which utilizes this assurance to improve the efficiency of the

implementation. Pederson has investigated parameter passing methods using direct

manipulation of the run time stack to preclude unnecessary coercions [Pe95]. His results

would be applicable to a large number of language implementations.

80

APPENDIX

This appendix provides a somewhat detailed treatment of the implementation

method presented in [Le92], which allows ML to be compiled with mixed data

representations. The discussion borrows heavily from that work. Section A provides a

formal description of the system. Section B provides translations for the examples shown

in Chapter IV.

A. FORMALIZATION

The method presented in [Le92] consists of a translation from a source language

to a target language. The source language is core ML. The target language is core ML

augmented with the two constructs wrap(x) and unwrap(x). The syntax is shown in

Figure Al, where x is an identifier, i is an integer constant,/is a floating point constant

and a is a type variable.

Source terms: a: ■= i l/l x \ Ax.a | letx = a] in a2 | a](a2) 1 (al< a2) 1 fst(fl) |
snd(a)

Target terms: a •;= / l/l x | Äx.a | let JC = a; in a2 \ ai(fl2) 1 (al a2) \ fst(a) |
snd(a)

| wrap(rXa') | unwrap(r)(a')

Type expressions: T: ■= a | int | float | TJ -> T2\ TJ X T2

Type schemes: G: := Vcti...ctn.T

Figure Al. Target Language Syntax. From [Le92].

Type inferencing is performed by applying Milner's type discipline to the source

language. While we will not concern ourselves here with type inferencing, the typing

81

rules are important due to the similarity with translation rules introduced next. The

typing rules are shown in Figure A2. The predicate E a x: Ms read as "under

A B
assumption E, term a has type t". The construct

C
is read "(A and B) implies C".

[1]
E(x) = \/av..an.T Dom(p)Q {av..an}

E a x : p(r)

[2] E h-> i: int [3] £(-»/: float

[4]

[5]

[6]

E + x:r, t-><z:r2

£i-> Ax.flr: Ti —>■ r2

£ i-> a2: T, -» r2 £ H-> «!: r2

£i->a2(a1):r2

£ h-> a,; r j Is i-> a2: r2

£t->(aj,a2):r, x r2

[7]
£Ha:r,xr2 roi £i->fl:r,xT2
 [oj
£ h-» fst(a): r, £ i-> snd(a): x2

[9]
ish-^rr, E+ x:Gen(r1,E)\-^a2 :z2

Ev^let x = ax in a2: r2

Figure A2. Typing Rules for Core ML. From [Le92].

Once the type system has established a typing for a term and it's sub-terms, the

translation rules of Figure A3 are applied. The translation is presented as the predicate

E H-> x: t => a', which is read as "under assumption E, term a has type t and is translated

to the term a'".

82

[Tl]
E(x) = Va1...an.T Dom(p)a:{av..an}

E h-> x : p(r) => Sp(x: r)

[T2] £h»/:int=>i [T3] E h-> /: float => /

[T4]
E + x: r, h-> a: r2 => a'

£ t-4 /I x.a: r, -> r2 => 2 x.a'

[T5]
£ i-> a2: r, -> r2 => a'2 E h-> a,: r2 => a',

£h->fl2(fl1):T2=>a,
2(ö'1)

[T6]
£ i-> a, ; r, => a', E 1-4 a2: r2 => a'2

£ h-> (al5a2) :^! x T2 => (a', ,a'2)

[T7]
£ h-> a: T! x r2 =e> a' rrroi £ h-> a: r, x r2 => a'

[1XJ
£ h-> fst(a): T, => fst(a') EI-» snd(a): r2 => snd(a')

[T9]
E h->a,: r, =>a', £ + x:Ge«(r, ,£) h->a2: r2 =>a'2

E\->let x = ax in a2: T2 => /ef a', w a'2

Figure A3. Translation Rules. From [Le92].

The heart of the translation is seen in the rule [Tl] which is the rule for type

specialization. E is the environment, a mapping from identifiers to type schemes and p is

a of types for type variables. Loosely translated, the rule [Tl] says: if there exists in £ a

mapping from some identifier x to some type scheme Vaj...an and the types a^-.a,, are

type variables in the domain of p, then x has a type defined by replacing each occurrence

of the type variable x with the type to which x is mapped in p and is translated by

applying the transformation Sp.

We shall return to the S transformation. For now, consider the concrete example

of Figure A4 which shows the process by which a polymorphic, higher-order function is

specialized. Initially, E and p are both empty. When the integer successor function,

83

succ, is defined, identifier succ is added to the domain of E and is associated with the

type int -> int. When the function apply is defined, the process is repeated for

identifier apply and the type (a -> ß) * a -> ß. Variable anlnt is handled likewise.

When apply is applied to succ and anlnt, the type system is able to infer that

both a and ß are both of type integer for this application; this mapping from type

variables to types for a given application is what p represents. As a result, apply is

assigned the type (int -> int) * int -> int for this application.

E ={}
P ={}

fun succ(x) = x + 1;
E ={succ =>int -> int}
P ={}

fun apply(f,x) = f (x) ;
E ={succ =>int -> int, apply => (a -> ß) * a -> ß}

p ={}

val x = 1;
E ={succ =>int -> int, apply =>(a->ß)* a->ß, x => int}

P ={}

val y = apply(succ,x);
E ={succ =>int -> int, apply => (a-> ß) * a-> ß, x => int}
p ={a=> int, ß => int}

Figure A4. Mappings of E and p.

The work of the translation is performed by the transformations S and G, shown in

Figures A5 and A6. In our example, translation rule [Tl] invokes the translation SfJ[x:x),

where x is the function apply and x is the type (int->int) *int->int.

In the notation of the translation rules, a' = x. We first apply S transformation rule [S5],

where a'= apply, ti = (int->int) *int, and t2 = int, resulting in the term

84

Xx. Sp (apply (Gp(x: (int->int) *int)) :int). The rest of the transformation

is straight forward and is shown in Figure A9.

[SI] Sp(a' : a) = unwrap(p(a))(a')

[S2] Sp(a' : inf) = a'

[S3] Sp(a' ■.float) = a'

[S4] Sfl(a' : T] x T2) = let x =a' in (Sp(fst(x): r/), Sp(snd(x): r2))

[S5] SpCa' : r/ -> T2) = Ax.Sp(a '(Gp(x : r/)): r2), where x is not free in a'

Figure A5. S Transformations. From [Le92].

[Gl] Gp{a' : a)=wrap(p(a)Xa')

[G2] Gp(a' : inf) = a'

[G3] Gp(fl' -.float) = a'

[G4] Gp(a' : T] x T2) = let x =a' in (Gp(fst(x): r/), Gp(snd(x) : T2))

[G5] GpUfi' : T/ -> T2) ~ Ax.Sp(a '(Sp(x : r/)) : 77), where x is not free in a'

Figure A6. G Transformations. [FromLe92].

85

B. TRANSLATIONS

The following translations are provided for examples given in Chapter IV. In

Figures A7 through A10, part (a) displays the source code, part (b) displays the function

application which invokes the translation, part (c) shows the translation as derived from

the translation and transformation rules of Section A, and part (d) shows the final results.

(a) fun id(x) = x;

(b) val one = id(1);

(c)
E h-> id: int -»int => Sp(id: a -> a) E (-> 1: int => 1

[T5], [Tl], [T3]
E h-> id(l): int => Sp(id: a -> a)(l)

S/Xid : a -> a) = Xx.Sp(id(Gp(x : int)): int) [S5]

= A,x.iSp(id(wrap(int)(x)): int) [Gl]

= Xx.unwrap(int)(id(wrap(int)(x))) [SI]

(d) id(l) = unwrap(int)(id(wrap(int)(l)))

Figure A7. Translation of Polymorphic Identity Function (see Figure 31).

86

(a) fun id(x) = x;
fun first(x,y) = id(x);

(b) val a = first(1, 2.0);

EI-» first: int x float -> int => Sp(first :ax /?-»«)

E i-> 1: int => 1

£ h-> 2.0: float => 2.0

£ H> first(l, 2.0): int => 5p(first: a x y9 -> a)(l, 2.0)
:c) [T5], [Tl], [T2], [T3]

Spürst: a x ß -> a) = Xx.<Sp(first(G/?(x : int x float)): int)

= A.x.Sp(first(let y = x in (Gp(fst(y): int), Gp(snd(y): float))): int)

[S5]

[G4]

= Xx.5yc<first(let y = x in (wrap(int)(fst(y)), wrap(float)(snd(y)))): int) [G2], [G3]

= A,x.unwrap(int)(first(let y = x in (wrap(int)(fst(y)), wrap(float)(snd(y))))) [S1]

(d)
first(l,2.0) = unwrap(int)(first(let y = (1,2.0) in (wrap(int)(fst(y)), wrap(float)(snd(y)))))

or, equivalently:

first(l,2.0) = unwrap(int)(first(wrap(int)(l), wrap(float)(2.0)))

Figure A8. Translation of Polymorphic Function First (see Figure 32).

87

(a) fun succ(x) = x + 1;
fun apply(f, x) = f(x);

(b) val two = apply(succ, 1);

E f-> apply: (int -> int) x int -> int => Sp(app\y: (a -> ß) x a -> ß)

E h-> succ: int —> int => succ

£i->l:int=>l .--o ml (C) [T5], [Tl],
E f-> apply(succ, 1): int => sp(app\y: (or -> ß) x a -» /?)(succ, 1)

[T2]

5yo(apply : (a -> ß) x a -> ß) = ?ix.Sp(apply(Gp(x: (int -> int) x int)): int) [S5]

= tac.Sp(apply(let y = x in (Gp(fst(y): int -> int), G/?(snd(y): int))): int) [G4]

= tocSftapplyOet y = x in (Gp(fst(y): int -> int), wrap(int)(snd(y)))): int) [Gl]

= kx.Sp(apply(let y = x in (ta.Gp(fst(y)OSyo(z: int)): int), wrap(int)(snd(y)))): int) [G5]

= A,x.Sp(apply(let y = x in (A.z.Gp(fst(y)(unwrap(int)(z)): int), wrap(int)(snd(y)))): int) [S1]

= A,x.Sp(apply(let y = x in (A.z.wrap(int)(fst(y)(unwrap(int)(z))), wrap(int)(snd(y)))): int) [Gl]

= A.x.unwrap(int)(apply(let y=x in (Az.wrap(int)(fst(y)(unwrap(int)(z))), wrap(int)(snd(y)))))
[SI]

(d)
apply(succ, 1) = unwrap(int)(apply(let y = (succ, 1) in (kz.wrap(int)(fst(y)(unwrap(int)(z))),

wrap(int)(snd(y)))))

= unwrap(int)(apply(A,z.wrap(int)(fst(succ, l)(unwrap(int)(z))), wrap(int)(snd(succ, 1))))

= unwrap(int)(apply(?iz. wrap(int)(succ(unwrap(int)(z))), wrap(int)(1)))

= unwrap(int)(apply(succ', wrap(int)(l))), where succ' = A.z.wrap(int)(succ(unwrap(int)(z)))

Figure A9. Translation of Higher-Order Function Apply (see Figures 33 - 35).

88

(a) fun mkPair(x) = (x, x);

(b) val realPair = mkPair(3.14);

(c)

Ei->mkPair:float-»float x float =><Syo(mkPair:« -» a x a)

E i—> 3.14: floats 3.14

E h-> mkPair (3.14): float => sp(mkPair: (a -» a x or)(3.14)
[T5], [Tl], [T3]

5/XmkPair : a -> a x a) = Xx.Sp(mkPair(Gp(x: float)): float * float)

= Ä,x.iS'p(mkPair(wrap(float)(x)): float x float)

= A.x.let y = mkPair(wrap(float)(x)) in (Sp(fst(y): float), Sp(snd(y): float))

[S5]

[Gl]

[S4]

= A.x.let y = mkPair(wrap(float)(x)) in (unwrap(float)(fst(y)), unwrap(float)(snd(y))) [SI]

(d)
mkPair(3.14) = let y = mkPair(wrap(float)(3.14)) in (unwrap(float)(fst(y)),
unwrap(float)(snd(y)))

or, equivalently

mkPair(3.14) = (unwrap(float)(fst(mkPair(wrap(float)(3.14)))),
unwrap(float)(snd(mkPair(wrap(float)(3.14)))))

Figure A10. Translation of Polymorphic Function mkPair (see Figure 37).

89

90

LIST OF REFERENCES

[Car84] Cardelli, L., Basic Polymorphic Type Checking, AT&T Bell Laboratories
Computing Science Technical Report 119, 1984.

[CaW85] Cardelli, L. and Wegner, P., On Understanding Types, Data Abstraction
and Polymorphism, Computing Surveys, MIA, 1985.

[CHJ94] Carlson, W., Hudak, P., Jones, M, An Experiment Using Haskell to
Prototype "Geometric Region Servers" for Navy Command and Control,
Yale University Research Report 1031,1994.

[HaL94] Harper, R. and Lee, P., Advanced Languages for Systems Software: The
Fox Project in 1994, Carnegie-Mellon University Technical Report 94-105,
1994.

[HuJ94] Hudak, P. and Jones, M., Haskell vs. Ada vs. Awk vs....: An experiment in
Software Prototyping Productivity, Yale University, 1994.

[KR78] Kernighan, B. and Richie, D., The C Programming Language, Prentice-
Hall, Englewood Cliffs, NJ, 1978.

[Le92] Leroy, X., Unboxed Objects and Polymorphic Typing, Proc. 19th ACM
Symposium on Principles of Programming Languages, pp. 177-188,1992.

[MDCB91] Morrison, R., Dearie, A., Connor, R. C. H. and Brown, A. L., An Ad Hoc
Approach to the Implementation of Polymorphism, A CM Transactions on
Programming Languages and Systems, 13/3, 1991.

[Pe95] Pederson, C, Uniform Representation in Polymorphic C, NPSCP-95-004,
September 1995.

[PJ91] Peyton-Jones, S. L., Unboxed Values as First-Class Citizens in a Non-Strict
Functional Language, Proc. 5th ACMConf. on Functional Programming
and Computer Architecture, LNCS 523, Springer-Verlag, pp. 637-666.

[ShA95] Shao, Z. and Appel, A., A Type-Based Compiler for Standard ML, Proc.
1995 Conf. on Programming Language Design and Implementation, pp
116-129,1995.

91

[SmVo95] Smith, G. and Volpano, D., An ML-style Polymorphic Type System for C,
Unpublished Manuscript.

[St92] Stansifer, R., ML Primer, Prentice-Hall, Englewood Cliffs, NJ, 1992.

[Str91] Stroustrup, B., The C++ Programming Language, 2nd Edition, Addison-
Wesley, Reading, MA, 1991.

[Th95] Thiemann, P., Unboxed Values and Polymorphic Typing Revisited, Record
of ACM Conf. on Functional Programming and Computer Architecture, pp.
24-35,1995.

[Wa90] Watt, D., Programming Language Concepts and Paradigms, Prentice-Hall
Intl, Hertfordshire, UK, 1990.

92

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

2. Dudley Knox Library
Code 013
Naval Postgraduate School
Monterey, California 93943-5101

Chairman, Code CS
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5101

Dr. Dennis Volpano, Code CS/VO
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5101

Dr. Thomas Wu, Code CS/WQ
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5101

Dr. Geoffrey Smith
School of Computer Science
Florida International University
University Park
Miami, Florida 33199

Peter B. Bonem
c/o Donald S. Bonem
6718 South 150th Street
Omaha, Nebraska 68137

93

